考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)把數(shù)列遞推式取倒數(shù),得到數(shù)列{
}是以1為首項(xiàng),以2為公差的等差數(shù)列,求出其通項(xiàng)公式后可得
數(shù)列{a
n}的通項(xiàng)公式a
n;
(2)把(1)中求出的通項(xiàng)公式代入
=
+1,整理后得到b
n,代入數(shù)列{b
n•b
n+1}后利用裂項(xiàng)相消法求數(shù)列的和;
(3)把a(bǔ)
n,b
n代入數(shù)列{
•2
},整理后利用錯(cuò)位相減法求數(shù)列{
•2
}的前n項(xiàng)和S
n.
解答:
解:(1)由a
n+1=
,得
-=2,又
=1,
∴數(shù)列{
}是以1為首項(xiàng),以2為公差的等差數(shù)列,
∴
=1+2(n-1)=2n-1,得a
n=
.
(2)由
=
+1,得
=2n-1+1=2n,∴b
n=
,
從而b
n•b
n+1=
=-,
則T
n=b
1b
2+b
2b
3+…+b
nb
n+1=
+
+…+
=(
-
)+(
-
)+(
-
)+…+(
-
)
=1-
=
.
(3)由(1)(2)可知,
=2n-1,
=n∴
•2=(2n-1)•2
n,
∴
Sn=1•21+3•22+5•23+7•24+…+(2n-1)•2n,
∴
2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2n+1,
兩式作差得:
| -Sn=1•21+2•22+2•23+2•24+…+2•2n-(2n-1)•2n+1 | =2(21+22+23+24+…+2n)-(2n-1)•2n+1-2 | =4•(2n-1)-(2n-1)•2n+1-2 |
| |
∴
Sn=(2n-1)•2n+1+2-4•(2n-1).
點(diǎn)評:本題考查了數(shù)列遞推式,考查了裂項(xiàng)相消法、錯(cuò)位相減法求數(shù)列的和,是中檔題.