執(zhí)行如圖所示的程序框圖,若輸入n=100,則輸出的S=
 

考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)程序框圖可知該程序的功能是計算S=
1
1×2
+
1
2×3
+…+
1
99×100
的值,根據(jù)裂項法即可得到結(jié)論.
解答: 解:由程序框圖可知,該程序的功能是計算S=
1
1×2
+
1
2×3
+…+
1
99×100
的值,
則S=
1
1×2
+
1
2×3
+…+
1
99×100
1-
1
2
+
1
2
-
1
3
+…+
1
99
-
1
100
=1-
1
100
=
99
100
,
故答案為:
99
100
點評:本題主要考查程序框圖的識別和應(yīng)用,了解程序的功能是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

南昌某中學(xué)為了重視國學(xué)的基礎(chǔ)教育,開設(shè)了A,B,C,D,E共5門選修課,每個學(xué)生必須且只能選修1門課程課,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生:
(1)求恰有2門選修課沒有被這4名學(xué)生選擇的概率;
(2)分別求出這4名學(xué)生選擇A選修課的人數(shù)為1和3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”,在這個定義下給出下列命題:
①到原點的“折線距離”等于2的點的軌跡是一個正方形;
②到原點的“折線距離”等于1的點的軌跡是一個圓;
③到M(-1,0),N(1,0)兩點的“折線距離”之和為4的軌跡是面積為6的六邊形;
④到M(-1,0),N(1,0)兩點的“折線距離”差的絕對值為3的點的軌跡是兩條平行直線.
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則正實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義兩點P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點O到直線x-y+1=0上任一點P的直角距離d(O,P)的最小值為
2
2

③若|PQ|表示P、Q兩點間的距離,那么|PQ|≥
2
2
d(P,Q);
④設(shè)A(x,y)且x∈Z,y∈Z,若點A是在過P(1,3)與Q(5,7)的直線上,且點A到點P與Q的“直角距離”之和等于8,那么滿足條件的點A只有5個.
其中的真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將直線2x-y-4=0繞著其與x軸的交點逆時針旋轉(zhuǎn)
π
4
得到直線m,則m的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)(3x+5y-4z)7展開式的項數(shù)為( 。
A、21B、28C、36D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex,g(x)=mx+n,e是自然對數(shù)的底,m,n∈R.
(Ⅰ)若m=1時方程f(x)-g(x)=0在[-1,1]上恰有兩個相異實根,求n的取值范圍;
(Ⅱ)若F(x)=f(x)g(x),且n=1-m,求F(x)在[0,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案