【題目】在公差為d的等差數(shù)列{an}中,已知a1=10,5a1a3=(2a2+2)2 .
(1)求d和an的值;
(2)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.
【答案】
(1)解:∵a1=10,5a1a3=(2a2+2)2,
∴50(10+2d)=4(10+d+1)2,
即d2﹣3d﹣4=0,解得d=﹣1或d=4.
故an=﹣n+11或an=4n+6.
(2)解:由題知d=﹣1,an=﹣n+11,則當n≤11時,an≥0,
當n>11時,an<0,
則|a1|+|a2|+|a3|+…+|a2021|=(a1+…+a11)﹣(a12+…+a2021)
=2(a1+…+a11)﹣(a1+a2…+a2021)
=2× ﹣
=2021110
【解析】(1)利用等差數(shù)列的通項公式列出方程解出公差,代入通項公式即可;(2)利用通項公式判斷{an}的非負項項數(shù),使用求和公式計算.
【考點精析】本題主要考查了等差數(shù)列的前n項和公式和數(shù)列的前n項和的相關(guān)知識點,需要掌握前n項和公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】A,B兩名同學在5次數(shù)學考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是( )
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,DA⊥AB,
DE=1,EC=,EA=2,
∠ADC=,∠BEC=.
(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F(xiàn)為線段DE上的一點.
(1)求證:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F與二面角F﹣BC﹣D的大小相等,求DF的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點P為AD的中點,點Q為SB的中點.
(1)求證:CD⊥平面SAD.
(2)求證:PQ∥平面SCD.
(3)若SA=SD,點M為BC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,一個動圓截直線和所得的弦長分別為8,4.
(1)求動圓圓心的軌跡方程;
(2)在軌跡上是否存在這樣的點:它到點的距離等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點都在河的對岸(不可到達),為了測量A、B兩點間的距離,選取一條基線CD,A、B、C、D在一平面內(nèi).測得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,則AB=( )
A. m
B.200 m
C.100 m
D.數(shù)據(jù)不夠,無法計算
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , , 為棱的中點.
(1)求證: 平面;
(2)若直線與平面所成的角為30°,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com