【題目】某大學宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.

(1)設在一次游戲中,摸出紅球的個數(shù)為,求分布列.

(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.

①求一次游戲中,獲獎的概率;

②若每次游戲結束后,將球放回原來的箱子,設4次游戲中獲獎次數(shù)為,求的數(shù)學期望.

【答案】(1)見解析;(2) ①.

【解析】

(1)由題得可以為0,1,2,3,再求出對應的概率,寫出分布列;(2)①由題得(一次游戲獲獎,計算即得解;②因為,所以利用二項分布的期望公式求的數(shù)學期望.

(1)可以為0,1,2,3,

,

,

,

0

1

2

3

(2) ①

(一次游戲獲獎)

②∵,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公園要設計如圖所示的景觀窗格(其結構可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設計方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實線部分,軸和邊框的粗細忽略不計)總長度為米.

(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;

(2)由于預算經(jīng)費限制,景觀窗格的外框總長度不超過米,當景觀窗格的面積(多邊形的面積)最大時,給出此景觀窗格的設計方案中的大小與的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中

(i)當時,若,則實數(shù)的取值范圍是___________

(ii) 若存在實數(shù)使得方程有兩個實根,則實數(shù)的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的方程為,曲線為參數(shù),),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為

求曲線C的直角坐標方程與直線l的極坐標方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生將語文、數(shù)學、英語、物理、化學、生物6科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數(shù)學,物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數(shù)為( )

A. 600B. 812C. 1200D. 1632

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為為參數(shù)),為過點的兩條直線,兩點,,兩點,且的傾斜角為.

(1)求的極坐標方程;

(2)當時,求點,,四點的距離之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了更好地服務民眾,某共享單車公司通過向共享單車用戶隨機派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結果相互獨立.

(I)求用戶騎行一次獲得0元獎券的概率;

(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為是拋物線上橫坐標為4且位于軸上方的點,點到拋物線準線的距離等于5.過點垂直于軸,垂足為的中點為.

1)求拋物線方程;

2)過點,垂足為,求點的坐標;

3)以點為圓心,為半徑作圓,當軸上一動點時,討論直線與圓的位置關系.

查看答案和解析>>

同步練習冊答案