【題目】某公園計劃在矩形空地上建造一個扇形花園如圖①所示,矩形邊與邊的長分別為48米與40米,扇形的圓心中點,扇形的圓弧端點,分別在上,圓弧的中點上.

1)求扇形花園的面積(精確到1平方米);

2)若在扇形花園內開辟出一個矩形區(qū)域為花卉展覽區(qū).如圖②所示,矩形的四條邊與矩形的對應邊平行,點分別在,上,點在扇形的弧上.某同學猜想:當矩形面積最大時,兩矩形的形狀恰好相同(即長與寬之比相同),試求花卉展覽區(qū)面積的最大值,并判斷上述猜想是否正確(請說明理由).

【答案】(1) 平方米 (2) 花卉展覽區(qū)面積的最大值為平方米,該同學的猜想是正確的.

【解析】

(1),則,,求出角,利用扇形的面積公式可求出扇形的面積.
(2) 在圖②中,連,設,中求出,又,所以矩形的面積化簡可得,從而可得出答案.

(1),則,

在直角三角形中,,.

所以.

所以扇形花園的面積約為平方米.

(2)在圖②中,連,設.

則在中,由,可得

連接于點,則,.

所以

所以矩形的面積

當且僅當,時,取最大值.

的最大值為,所以花卉展覽區(qū)面積的最大值為平方米.

的面積最大時,

此時從而兩矩形長和寬之比相等.

所以兩矩形的形狀相同,即該同學的猜想是正確的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,,,..,,,,,的前n項和為,正整數(shù),滿足:①,②是滿足不等式的最小正整數(shù),則

A.6182B.6183C.6184D.6185

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為準備參加市運動會,對本校甲、乙兩個田徑隊中名跳高運動員進行了測試,并用莖葉圖表示出本次測試人的跳高成績(單位:.跳高成績在以上(包括)定義為“合格”,成績在以下(不包括)定義為“不合格”.鑒于乙隊組隊晚,跳高成績相對較弱,為激勵乙隊隊隊,學校決定只有乙隊中“合格”者才能參加市運動會開幕式旗林隊.

1)求甲隊隊員跳高成績的中位數(shù);

2)如果用分層抽樣的方法從甲、乙兩隊所有的運動員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;

3)若從所有“合格”運動員中選取名,用表示所選運動員中能參加市運動會開幕式旗林隊的人數(shù),試求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論上的單調性;

(Ⅱ)設,若的最大值為0,求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知六面體如圖所示,平面,,,,,是棱上的點,且滿足.

1)求證:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐是等邊三角形,,,,的中點.

)證明:直線平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足

1)求a1a2,a3的值;

2)對任意正整數(shù)n,an小數(shù)點后第一位數(shù)字是多少?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=(sinx+cosx2cos2x).

1)求函數(shù)fx)的最小正周期;

2)已知△ABC的內角AB,C的對邊分別為ab,c,若,且a2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強”四個字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個字都取到記為事件A,用隨機模擬的方法估計事件A發(fā)生的概率,利用電腦隨機產生整數(shù)0,1,2,3四個隨機數(shù),分別代表“國”、“富”、“民”、“強”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數(shù):

231

232

210

023

122

021

321

220

031

231

103

133

132

001

320

123

130

233

由此可以估計事件A發(fā)生的概率為_____.

查看答案和解析>>

同步練習冊答案