13.過點(-3,-1)且與直線x-2y+3=0平行的直線方程是( 。
A.2x+y+7=0B.2x-y+5=0C.x-2y+1=0D.x-2y+5=0

分析 設(shè)過點(-3,-1)且與直線x-2y+3=0平行的直線方程為x-2y+m=0,把點(-3,-1)代入上述方程解得m,即可得出.

解答 解:設(shè)過點(-3,-1)且與直線x-2y+3=0平行的直線方程為x-2y+m=0,
把點(-3,-1)代入上述方程可得:-3+2+m=0,解得m=1.
∴要求的直線方程為:x-2y+1=0.
故選:C.

點評 本題考查了相互平行的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三角形ABC中,已知A=60°,b=1,其面積為$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinc}$為( 。
A.$3\sqrt{3}$B.$\frac{{\sqrt{39}}}{2}$C.$\frac{{26\sqrt{3}}}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=(x2+ax+b)(ex-e),a,b∈R,當x>0時,f(x)≥0,則實數(shù)a的取值范圍為( 。
A.-2≤a≤0B.-1≤a≤0C.a≥-1D.0≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{(x+2)(x-t)}{{x}^{2}}$為偶函數(shù).
(1)求實數(shù)t值;
(2)記集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5-1,判斷λ與E的關(guān)系;
(3)當x∈[a,b](a>0,b>0)時,若函數(shù)f(x)的值域為[2-$\frac{5}{a}$,2-$\frac{5}$],求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l過點P(2,4),且與圓O:x2+y2=4相切,則直線l的方程為( 。
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋擲一枚均勻的硬幣4次,出現(xiàn)正面次數(shù)多余反面次數(shù)的概率是( 。
A.$\frac{7}{16}$B.$\frac{1}{8}$C.$\frac{1}{2}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題p:甲的數(shù)學(xué)成績不低于100分,命題q:乙的數(shù)字成績低于100分,則p∨(¬q)表示( 。
A.甲、乙兩人數(shù)學(xué)成績都低于100分
B.甲、乙兩人至少有一人數(shù)學(xué)成績低于100分
C.甲、乙兩人數(shù)學(xué)成績都不低于100分
D.甲、乙兩人至少有一人數(shù)學(xué)成績不低于100分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F(xiàn)分別為AB,BC的中點,則$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列說法,其中正確的個數(shù)是( 。
①命題“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”;
②命題“若x=y,則sinx=siny”的否命題是:“若x=y,則sinx≠siny”;
③“7<k<9”是“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦點在x軸上的橢圓”的充分不必要條件;
④“m=2”是“l(fā)1:2x+(m+1)y+4=0與l2:mx+3y-2=0平行”的充要條件.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案