如圖,已知正三角形PAB⊥底面ABCD,其中∠ABC=∠BAD=90°且BC=2AD=2AB=4,

(Ⅰ)求證:AD∥平面PBC

(Ⅱ)求四棱錐P-ABCD的體積

(Ⅲ)求PC與底面ABCD所成角的余弦值(文科)

求二面角P-CD-B的余弦值(理科)

答案:
解析:

  (1)∵

  平面

  平面

  ∴//平面 3分

  (2)取中點,連接

  ∵是正三角形

  ∴

  又∵平面底面

  平面

  平面底面

  ∴底面

   6分

  (3)(文科)

  ∵底面

  ∴就是直線與底面所成角

  ∵

  ∴

  ∴ 10分

  (理科)

  過,連接

  ∵底面

  ∴

  ∴平面

  平面

  ∴

  ∴就是所求二面角的一個平面角

  ∵

  ∴ 10分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD,PB⊥AD側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,側(cè)面PAD與底面ABCD所成的二面角為120°.
(I)求點P到平面ABCD的距離,
(II)求面APB與面CPB所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知放在同一平面上的兩個正三棱錐P-ABD、S-BCD(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等.若AB=6,二面角P-BD-S的余弦值為
13

(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求多面體SPABC的體積..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)如圖,已知四棱錐S-ABCD中,△SAD是邊長為a的正三角形,平面SAD⊥平面ABCD,四邊形ABCD為菱形,∠DAB=60°,P為AD的中點,Q為SB的中點.
(Ⅰ)求證:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)如圖,已知四棱錐S-ABCD中,△SAD是邊長為a的正三角形,平面SAD⊥平面ABCD,四邊形ABCD為菱形,∠DAB=60°,P為AD的中點,Q為SB的中點.
(1)求證:PQ∥平面SCD;
(2)求二面角B-PC-Q的余弦值.

查看答案和解析>>

同步練習冊答案