【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求
,并估計
的預(yù)報值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計算出的
的值(
精確到0.01)相比于(Ⅰ)中
的值之差不超過10%,則使用位置最接近的已有舊井
,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
【答案】(1),
;(3)
;(3)
.
【解析】試題分析:(1)因?yàn)榛貧w直線必過樣本中心點(diǎn),求得
;(2)利用公式求得
,再和現(xiàn)有數(shù)據(jù)進(jìn)行比較;(3)是古典概型,由題意列出從這
口井中隨機(jī)選取
口井的可能情況,求出概率.
試題解析:因?yàn)?/span>
,,回歸只需必過樣本中心點(diǎn)
,則
,
故回歸只需方程為,
當(dāng)時,
,即
的預(yù)報值為
.………………4分
因?yàn)?/span>
,
,
所以
.
,
即,
.
,
,均不超過
,因此使用位置最接近的已有舊井
;………………8分
易知原有的出油量不低于
的井中,
這
口井是優(yōu)質(zhì)井,
這
口井為非優(yōu)質(zhì)井,由題意從這
口井中隨機(jī)選取
口井的可能情況有:
,
,
,
共
種,其中恰有
口是優(yōu)質(zhì)井的有
中,所以所求概率是
.………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】滬昆高速鐵路全線2016年12月28日開通運(yùn)營.途經(jīng)鷹潭北站的、
兩列列車乘務(wù)組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個車次各隨機(jī)抽取了100名旅客進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果,繪制了月乘車次數(shù)的頻率分布直方圖和頻數(shù)分布表.
(1)若將頻率視為概率,月乘車次數(shù)不低于15次的稱之為“老乘客”,試問:哪一車次的“老乘客”較多,簡要說明理由;
(2)已知在次列車隨機(jī)抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成
列聯(lián)表,并根據(jù)資料判斷,是否有
的把握認(rèn)為年齡與乘車次數(shù)有關(guān),說明理由.
老乘客 | 新乘客 | 合計 | |
50歲以上 | |||
50歲以下 | |||
合計 |
附:隨機(jī)變量(其中
為樣本容量)
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“幸”“福”“快”“樂”四個字,有放回地從中任取一個小球,取到“快”就停止,用隨機(jī)模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生1到4之間取整數(shù)值的隨機(jī)數(shù),且用1,2,3,4表示取出小球上分別寫有“幸”“福”“快”“樂”四個字,以每兩個隨機(jī)數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
據(jù)此估計,直到第二次就停止的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在區(qū)間
上的奇函數(shù),且
若對于任意的
有
(1)判斷并證明函數(shù)的單調(diào)性;
(2)解不等式;
(3)若對于任意的
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù),若滿足:
,都有
成立,則稱
是D上的有界函數(shù),其中M稱為函數(shù)
的上界.
(I)設(shè),證明:
在
上是有界函數(shù),并寫出
所有上界的值的集合;
(II)若函數(shù)在
上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于x=1對稱,當(dāng)x∈[0,1]時,f(x)=2x-1.
(1)當(dāng)x∈[1,2]時,求f(x)的解析式;
(2)計算f(0)+f(1)+f(2)+…+f(2017)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)
,橢圓
的左,右頂點(diǎn)分別為
.過點(diǎn)
的直線
與橢圓交于
兩點(diǎn),且
的面積是
的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與
軸垂直,
是橢圓
上位于直線
兩側(cè)的動點(diǎn),且滿足
,試問直線
的斜率是否為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com