已知拋物線y=-x與直線y=k(x+1)相交于A、B兩點(diǎn).

(1)求證:OA⊥OB;

(2)當(dāng)△OAB的面積等于時(shí),求k的值.

(1)證明:如下圖,由方程組消去x,并整理得ky+y-k=0.

設(shè)A(x,y),B(x,y),由韋達(dá)定理y1·y=-1.

∵A、B在拋物線y2=-x上,

∴y=-x1,y=-x,y·y=xx

∵kOA·kOB==-1,

∴OA⊥OB.

(2)解:設(shè)直線與x軸交于N,又顯然k≠0,

∴令y=0,則x=-1,即N(-1,0).

∵S△OAB=S△OAN+S△OBN

=|ON||y1|+|ON||y2|

=|ON|·|y1-y2|,

∴S△OAB=·1·.

∵S△OAB=,∴=.

解之,得k=±.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知,A是拋物線y2=2x上的一動(dòng)點(diǎn),過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點(diǎn),交拋物線于M、N兩點(diǎn),交y軸于B、C兩點(diǎn)

(1)當(dāng)A點(diǎn)坐標(biāo)為(8,4)時(shí),求直線EF的方程;

(2)當(dāng)A點(diǎn)坐標(biāo)為(2,2)時(shí),求直線MN的方程;

(3)當(dāng)A點(diǎn)的橫坐標(biāo)大于2時(shí),求△ABC面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案