過點A(-1,0),斜率為k的直線,被圓截得的弦長為2,則k的值為( )。

(A) (B) (C) (D)

 

A

【解析】

試題分析:設(shè)直線為,根據(jù)弦長公式,可得:,,解得:,故選A.

考點:直線與圓的位置關(guān)系

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河?xùn)|區(qū)高三一模試卷文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知棱長為l的正方體中,E,F(xiàn),M分別是AB、AD、的中點,又P、Q分別在線段上,且,設(shè)面面MPQ=,則下列結(jié)論中不成立的是( )

A.面ABCD B.AC

C.面MEF與面MPQ不垂直 D.當(dāng)x變化時,不是定直線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河?xùn)|區(qū)高三一模文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,且,

成等比數(shù)列,則xy( )

A.有最大值e B.有最大值

C.有最小值e D.有最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市南開區(qū)高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若某程序框圖如圖所示,則該程序運行后輸出的B等于( ).

(A)7 (B)15 (C)31 (D)63

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市南開區(qū)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

平面截球O的球面所得圓的半徑為1,球心O到平面的距離為,則此球的體積為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省高三下學(xué)期3月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù).

(1)求的單調(diào)區(qū)間和最小值;

(2)討論的大小關(guān)系;

(3)是否存在x0>0,使得|g(x)﹣g(x0)|<對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省高三下學(xué)期3月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省高三下學(xué)期3月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)(x,y,z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;

(2)在該樣品的一等品中,隨機抽取兩件產(chǎn)品,

(1)用產(chǎn)品編號列出所有可能的結(jié)果;

(2)設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省資陽市高三下學(xué)期4月高考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前n項和為滿足:

(1)求證:數(shù)列是等比數(shù)列;

(2)令,對任意,是否存在正整數(shù)m,使都成立?若存在,求出m的值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案