(本題滿(mǎn)分14分)已知函數(shù)為常數(shù),).

(Ⅰ)當(dāng)時(shí),求函數(shù)處的切線方程;

(Ⅱ)當(dāng)處取得極值時(shí),若關(guān)于的方程在[0,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(Ⅲ)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(Ⅰ) ;(Ⅱ) ;(Ⅲ)實(shí)數(shù)的取值范圍為

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用

(1)利用導(dǎo)數(shù)的幾何意義,表示切線的斜率和點(diǎn)的坐標(biāo),進(jìn)而得到切線方程。

(2)求解導(dǎo)數(shù),運(yùn)用導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系得到極值的判定。并解決問(wèn)題。

(3)當(dāng)時(shí),,

∴ f(x) 在上單調(diào)遞增,最大值為,于是問(wèn)題等價(jià)于:

對(duì)任意的,不等式恒成立

運(yùn)用導(dǎo)數(shù)來(lái)完成恒成立的證明。

解:.

(Ⅰ)當(dāng)a=1時(shí),,∴,∴切線方程為;

(Ⅱ)由已知,得,∴,∵a>0,∴a=2.∴,f(x)在上單調(diào)遞減,在上單調(diào)遞增

,∴  (8分)

(Ⅲ)當(dāng)時(shí),

∴ f(x) 在上單調(diào)遞增,最大值為,于是問(wèn)題等價(jià)于:

對(duì)任意的,不等式恒成立.(10分)

,(

當(dāng)時(shí),,∴在區(qū)間上遞減,此時(shí),,

時(shí)不可能使恒成立,故必有,∵

,可知在區(qū)間上遞增,在此區(qū)間上有g(shù)(a)>g(1)=0滿(mǎn)足要求;

,可知在區(qū)間上遞減,在此區(qū)間上,有,與恒成立矛盾,

所以實(shí)數(shù)的取值范圍為.(14分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)已知向量 ,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿(mǎn)足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿(mǎn)足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分14分)

已知橢圓的離心率為,過(guò)坐標(biāo)原點(diǎn)且斜率為的直線相交于、,

⑴求、的值;

⑵若動(dòng)圓與橢圓和直線都沒(méi)有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿(mǎn)分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案