如圖,在矩形ABCD中,已知A(2,0)、C(-2,2),點P在BC邊上移動,線段OP的垂直平分線交y軸于點E,點M滿足

(Ⅰ)求點PM的軌跡方程;

(Ⅱ)已知點F(0,),過點F的直線l交點M的軌跡于Q、R兩點,且求實數(shù)λ的取值范圍.

答案:
解析:

  (Ⅰ)依題意,設(shè)P(t,2)(-2≤t≤2),M(x,y).

  當(dāng)t=0時,點M與點E重合,則M=(0,1);  1分

  當(dāng)t≠0時,線段OP的垂直平分線方程為

  

  

  顯然,點(0,1)適合上式.

  故點M的軌跡方程為x2=-4(y-1)(-2≤x≤2).  7分

  (Ⅱ)設(shè)

  x2+4k-2=0.

  設(shè)Q(x1,y1)、R(x2,y2),則

    8分

  ,  10分

  

  消去x2,得.   12分

  

  解得


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=2BC,P,Q分別為線段AB,CD的中點,EP⊥平面ABCD.
(1) 求證:AQ∥平面CEP;
(2) 求證:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點,現(xiàn)將△AED沿DE折起,使點A到點P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點.
(1)求證:BM∥平面PDE;
(2)線段BC上是否存在一點N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD將BCD折起,使點C移到點C′,且C′在平面ABD的射影O恰好在AB上
(1)求證:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個三等分點,AC,DF相交于點G,建立適當(dāng)?shù)钠矫嬷苯亲鴺讼担?br />(1)若動點M到D點距離等于它到C點距離的兩倍,求動點M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=
12
BC,E為AD的中點,將△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求證:CE⊥AB;
(2)在線段BC上找一點F,使DF∥平面ABE.

查看答案和解析>>

同步練習(xí)冊答案