如圖,在平面直角坐標(biāo)系中,已知,,,直線(xiàn)與線(xiàn)段、分別交于點(diǎn)、.
(1)當(dāng)時(shí),求以為焦點(diǎn),且過(guò)中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作直線(xiàn)交于點(diǎn),記的外接圓為圓.
①求證:圓心在定直線(xiàn)上;
②圓是否恒過(guò)異于點(diǎn)的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.
(1)(2)①略②.
解析試題分析:(1)根據(jù)題意,,,求出,可得到方程;(2)①解法一:根據(jù)題意寫(xiě)出的坐標(biāo),線(xiàn)段的中垂線(xiàn)的交點(diǎn)就是圓心,將圓心坐標(biāo)代入中,可得證;解法二:設(shè)出一般方程,將三點(diǎn)的坐標(biāo)代入,聯(lián)立求解;②根據(jù)①,寫(xiě)出圓系方程,聯(lián)立方程解得該定點(diǎn).
試題解析:(1)設(shè)橢圓的方程為,
當(dāng)時(shí), 的中點(diǎn)為,則 1分
而,所以, 2分
故橢圓的標(biāo)準(zhǔn)方程為 3分
(Ⅱ)①解法一:易得直線(xiàn),直線(xiàn)
可得,再由,得 5分
則線(xiàn)段的中垂線(xiàn)方程為, 6分
線(xiàn)段的中垂線(xiàn)方程為, 7分
由, 8分
解得的外接圓的圓心坐標(biāo)為 9分
經(jīng)驗(yàn)證,該圓心在定直線(xiàn)上 10分
②由①可得圓C的方程為 11分
該方程可整理為,
則由,解得或, 13分
所以圓恒過(guò)異于點(diǎn)的一個(gè)定點(diǎn),該點(diǎn)坐標(biāo)為 14分
解法二: 易得直線(xiàn),直線(xiàn) 5分
所以可得, 6分
再由<
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線(xiàn)交橢圓與、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的長(zhǎng)軸長(zhǎng)為4,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線(xiàn)段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線(xiàn)交拋物線(xiàn)于不同的兩點(diǎn)若拋物線(xiàn)上一點(diǎn)滿(mǎn)足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C長(zhǎng)軸的兩個(gè)頂點(diǎn)為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線(xiàn)x=2上不同于點(diǎn)B的任意一點(diǎn),直線(xiàn)AN與橢圓C交于點(diǎn)Q,設(shè)直線(xiàn)QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),求證:直線(xiàn)NM經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線(xiàn)與直線(xiàn)相切,是拋物線(xiàn)上兩個(gè)動(dòng)點(diǎn),為拋物線(xiàn)的焦點(diǎn),的垂直平分線(xiàn)與軸交于點(diǎn),且.
(1)求的值;
(2)求點(diǎn)的坐標(biāo);
(3)求直線(xiàn)的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線(xiàn)的參數(shù)方程為 (t為參數(shù),0<a<),曲線(xiàn)C的極坐標(biāo)方程為.
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C相交于A(yíng)、B兩點(diǎn),當(dāng)a變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄AC經(jīng)過(guò)點(diǎn),且在x軸上截得弦長(zhǎng)為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線(xiàn)E的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)m交曲線(xiàn)E于A(yíng),B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作曲線(xiàn)E的切線(xiàn),兩切線(xiàn)交于點(diǎn)C,當(dāng)△ABC的面積為時(shí),求直線(xiàn)m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是橢圓的右焦點(diǎn),圓與軸交于兩點(diǎn),是橢圓與圓的一個(gè)交點(diǎn),且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過(guò)點(diǎn)與圓相切的直線(xiàn)與的另一交點(diǎn)為,且的面積等于,求橢圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com