函數(shù)y=x2+x (-1≤x≤3 )的值域是( 。
A.[0,12]B.[-
1
4
,12]
C.[-
1
2
,12]
D.[
3
4
,12]
由y=x2+x得y=(x+
1
2
)
2
-
1
4
,
∴函數(shù)的對稱軸為直線x=-
1
2

∵-1≤x≤3,
∴函數(shù)在[-1,-
1
2
]
上為減函數(shù),在[-
1
2
,3]
上為增函數(shù)
∴x=-
1
2
時,函數(shù)的最小值為-
1
4

x=3時,函數(shù)的最大值為12
-
1
4
≤y≤12.
故值域是[-
1
4
,12]
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2-x+n
x2+1
(n∈N+,y≠1)
的最小值為an,最大值為bn,且cn=4(
a
 
n
bn-
1
2
)
,數(shù)列{Cn}的前n項和為Sn
(1)求數(shù)列{cn}的通項公式;
(2)若數(shù)列{dn}是等差數(shù)列,且dn=
Sn
n+c
,求非零常數(shù)c;
(3)若f(n)=
dn
(n+36)dn+1
(n∈N+)
,求數(shù)列{f(n)}的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2+|x|,單調(diào)遞減區(qū)間為
 
,最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+λx在定義域N*內(nèi)單調(diào)遞增,則實數(shù)λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2+x+1
的定義域是
R
R
,值域為
[
3
2
,+∞)
[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x取值范圍是
(3,+∞)∪(-∞,-4)
(3,+∞)∪(-∞,-4)
時,函數(shù)y=x2+x-12的值大于零.

查看答案和解析>>

同步練習冊答案