設P是三角形ABC所在平面內(nèi)一點,,則     (      )

A、           B、

C、           D、

 

【答案】

B

【解析】解:因為

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊長分別為a,b,c,設命題p:
a
sinB
=
b
sinC
=
c
sinA
,命題q:△ABC是等邊三角形,那么命題p是命題q的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC的底面ABC是以AC為斜邊的直角三角形,且頂點P在底面的射影是△ABC外心,設PB=AB=1,BC=
2

(1)求證:面PAC⊥面ABC;
(2)求側(cè)棱PB與底面ABC所成的角;
(3)求側(cè)面PAB與底面ABC所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設直三梭柱ABC-A1B1C1的底面為等腰直角三角形,AB=AC=2,動點E、F在側(cè)棱CC1上,動點P、Q分別碰AB1,BB1上,若EF═1,CE=x,BQ=y,BP=z,其中x,y,z>0,則下列結(jié)論中錯誤的是.(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴州模擬)如圖,△ABC中,O是BC的中點,AB=AC,AO=2OC=2.將三角形BAO沿AO折起,使B點與圖中B1點重合,其中B1O⊥平面AOC.
(Ⅰ)求二面角A-B1C-O的大;
(Ⅱ)設P為線段B1A的中點,求CP與平面B1OA所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省成都市高考數(shù)學一模試卷(文科)(解析版) 題型:選擇題

設直三梭柱ABC-A1B1C1的底面為等腰直角三角形,AB=AC=2,動點E、F在側(cè)棱CC1上,動點P、Q分別碰AB1,BB1上,若EF═1,CE=x,BQ=y,BP=z,其中x,y,z>0,則下列結(jié)論中錯誤的是.( )

A.EF∥平面 BPQ
B.二面角P-EF-Q所成角的最大值為
C.三棱錐P-EFQ的體積與y的變化有關,與x,z的變化無關
D.若D為線段BC的中點,則異面直線EQ和AD所成角的大小與x,y,z的變化無關

查看答案和解析>>

同步練習冊答案