【題目】已知是等差數(shù)列,其前項中的奇數(shù)項的和與偶數(shù)項的和之差為.

1)請證明這一結(jié)論對任意等差數(shù)列中各項均不為零)恒成立;

2)請類比等差數(shù)列的結(jié)論,對于各項均為正數(shù)的等比數(shù)列,提出猜想,并加以證明.

【答案】1)證明見解析(2)類比猜想:各項均為正數(shù)的等比數(shù)列的前項中奇數(shù)項的積與偶數(shù)項的積的比為,證明見解析

【解析】

1)由可得

2)類比猜想可得:各項均為正數(shù)的等比數(shù)列的前項中奇數(shù)項的積與偶數(shù)項的積的比為,然后證明出來即可.

證明:(1)記為等差數(shù)列項中奇數(shù)項的和,

為等差數(shù)列項中偶數(shù)項的和,

由等差數(shù)列的前項和公式可得,

.

命題成立.

2)解:類比猜想可得:各項均為正數(shù)的等比數(shù)列的前項中奇數(shù)項的積與偶數(shù)項的積的比為.

證明:記各項均為正數(shù)的等比數(shù)列的前項中奇數(shù)項的積為,

偶數(shù)項的積為,

,即,

,即,

,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省積極響應(yīng)教育部號召實行新課程改革,為了調(diào)查某校高三學(xué)生的物理考試成績是否達(dá)到級與學(xué)生性別是否有關(guān),從該校高三學(xué)生中隨機抽取了部分男女生的成績得到如下列聯(lián)表:

考試成績達(dá)到

考試成績未達(dá)到

總計

男生

26

40

女生

6

總計

70

1)(。⿲列聯(lián)表補充完整;

(ⅱ)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為物理考試成績是否達(dá)到級與性別有關(guān)?

2)將頻率視作概率,從該校高三年級任意抽取3名學(xué)生的成績,求物理考試成績達(dá)到級的人數(shù)的分布列及期望.

附:

0.050

0.010

0.001

3.841

6.635

10..828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨立.現(xiàn)對小明同學(xué)進行以上三次射擊的考核.

1)求小明同學(xué)恰好命中一次的概率;

2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率,其右焦點為.

1)求橢圓的方程;

2)過作夾角為的兩條直線分別交橢圓,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于獨立性檢驗的敘述

①常用等高條形圖表示列聯(lián)表數(shù)據(jù)的頻率特征;

②獨立性檢驗依據(jù)小概率原理;

③獨立性檢驗的結(jié)果是完全正確的;

④對分類變量的隨機變量的觀測值來說,越小,有關(guān)系的把握程度就越大.

其中敘述正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有如下命題,其中真命題的標(biāo)號為(

A.若冪函數(shù)的圖象過點,則

B.函數(shù),且)的圖象恒過定點

C.函數(shù)有兩個零點

D.若函數(shù)在區(qū)間上的最大值為4,最小值為3,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合是非空集合的兩個不同子集.

1)若,且的子集,求所有有序集合對的個數(shù);

2)若,且的子集,求所有有序集合對的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某屆奧運會上,中國隊以261826銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機抽取了50人,具體的調(diào)查結(jié)果如表:

班號

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6

(1)在高三年級全體學(xué)生中隨機抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對象中隨機選取4人進行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為檢驗兩條生產(chǎn)線的優(yōu)品率,現(xiàn)從兩條生產(chǎn)線上各抽取件產(chǎn)品進行檢測評分,用莖葉圖的形式記錄,并規(guī)定高于分為優(yōu)品.件的評分記錄如下,第件暫不公布.

1)求所抽取的生產(chǎn)線上的個產(chǎn)品的總分小于生產(chǎn)線上的第個產(chǎn)品的總分的概率;

2)已知生產(chǎn)線的第件產(chǎn)品的評分分別為.

①從生產(chǎn)線的件產(chǎn)品里面隨機抽取件,設(shè)非優(yōu)品的件數(shù)為,求的分布列和數(shù)學(xué)期望;

②以所抽取的樣本優(yōu)品率來估計生產(chǎn)線的優(yōu)品率,從生產(chǎn)線上隨機抽取件產(chǎn)品,記優(yōu)品的件數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案