精英家教網 > 高中數學 > 題目詳情
若(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),且a:b=3:1,那么n=   
【答案】分析:根據條件中所給的二項式定理的展開式,寫出a和b的值,根據這兩個數字的比值,寫出關于n的等式,即方程,解方程就可以求出n的值.
解答:解:∵(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),
∴a=Cn3,b=Cn2,
∵a:b=3:1,
∴a:b=Cn3:Cn2=3:1,
=3:1,
∴n=11.
故答案為:11
點評:本題是考查二項式定理應用,考查二項式定理的二項式系數,是一個基礎題,解題的關鍵是寫正確要用的a和b的值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),且a:b=3:1,那么n=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、若(x+1)n=xn+…+ax3+bx2+…+1,且a=669b,則n=
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

11、若(x+1)n=xn+…+px2+qx+1(n∈N*),且p+q=6,那么n=
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若(x+1)n=xn+…+ax3+bx2+…+1,且a=3b,則n=
11
11

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)條件
0≤x≤1
0≤y≤1
x+y≤
3
2
下,函數p=log
2
5
(2x+y)
的最小值為
-1
-1

(理)若(x+1)n=xn+…+ax3+bx2+…+1,(n∈N*),且a:b=3:1,則n=
11
11

查看答案和解析>>

同步練習冊答案