【題目】已知圓.
(1)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;
(2)設(shè)點(diǎn)在圓上,求點(diǎn)到直線距離的最大值與最小值.
【答案】(1)或;(2)和.
【解析】
試題分析:(1)把圓的方程化為標(biāo)準(zhǔn),找出圓心坐標(biāo)和半徑,根據(jù)直線在兩坐標(biāo)軸上的截距相等且不經(jīng)過(guò)坐標(biāo)原點(diǎn)設(shè)出直線的方程為,利用點(diǎn)到直線的距離公式求出圓心到直線的距離,讓距離等于半徑列出關(guān)于的方程,求出方程的解即可得到的值,進(jìn)而確定出直線的方程;(2)利用點(diǎn)到直線的距離公式求出圓心到直線 的距離,所以點(diǎn)到直線距離的最大,小值為和.
試題解析:(1)圓的方程可化為,即圓心的坐標(biāo)為,半徑為,因?yàn)橹本在兩坐標(biāo)軸上的截距相等且不經(jīng)過(guò)坐標(biāo)原點(diǎn),所以可設(shè)直線的方程為;于是有,得或,因此直線的方程為或.
(2)因?yàn)閳A心到直線的距離為,
所以點(diǎn)到直線距離的最大值與最小值依次分別為 和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
附:
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算的觀測(cè)值為10,則下列選項(xiàng)正確的是( )
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算的觀測(cè)值為10,則下列選項(xiàng)正確的是( )
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:
A車型 B車型
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 | 車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅲ)
(ⅰ)試寫出A,B兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;
(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購(gòu)買一輛(注:兩種車型的采購(gòu)價(jià)格相當(dāng)),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離和它到直線的距離
之比是常數(shù),記動(dòng)點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)過(guò)點(diǎn)且不與軸重合的直線,與軌跡交于,兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),與軌跡是否存在點(diǎn),使得四邊形為菱形?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com