如圖是一名籃球運動員在某一賽季10場比賽的得分的原始記錄的徑葉圖,
(1)計算該運動員這10場比賽的平均得分;
(2)估計該運動員在每場比賽中得分不少于40分的概率.
考點:莖葉圖
專題:概率與統(tǒng)計
分析:(1)由已知中莖葉圖分析出該籃球運動員在某一賽季10場比賽的得分的原始數(shù)據(jù),代入平均分公式,可得答案.
(2)求出在每場比賽中得分不少于40分的數(shù)據(jù)個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:(1)由已知中莖葉圖可得該籃球運動員在某一賽季10場比賽的得分分別為:
16,24,27,33,34,36,39,41,44,46,
故該運動員這10場比賽的平均得分為:
1
10
(16+24+27+33+34+36+39+41+44,46)=34;
(2)由(1)可得:運動員在每場比賽中得分不少于40分的場次共有3場,
故該運動員在每場比賽中得分不少于40分的概率P=
3
10
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

要使sinα-
3
cosα=
4m-6
4-m
有意義,則m的取值范圍是(  )
A、m≤
7
3
B、m≥-1
C、-1≤m≤
7
3
D、m≤-1或 m≥
7
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列定積分
(1)
1
0
(2x-x2)dx

(2)
4
2
(3-2x)dx

(3)
1
0
1
3
x2dx

(4)
0
cosxdx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的導函數(shù)f′(x)=ex-1(e為自然對數(shù)的底數(shù),f(x)解析式無常數(shù)項)
(1)求f(x)的最小值;
(2)若對于任意的x∈[0,2],不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:(1)a2+b2+3≥ab+
3
(a+b)
(2)
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知ABCD是邊長為2的正方形,EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,設EA=1,F(xiàn)C=2;
(1)證明:平面EAB⊥平面EAD;
(2)求四面體BDEF的體積;
(3)求點B到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有6套最新2014年春夏流行服裝,其中有4套春季服裝,2套夏季服裝,某著名主持人從中選取2套,試求:
(I)所取的2套服裝都是春季服裝的概率;
(Ⅱ)所取的2套服裝不是同一季服裝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學生創(chuàng)業(yè)團隊淘寶項目每月要投入一定的營銷費用,已知每投入營銷費用k萬元,每月銷售收入大概增加-k2+5k+1萬元.(利潤=增加的銷售收入-投入)
(Ⅰ)若該創(chuàng)業(yè)團隊將本月的營銷費用控制在3萬元之內,則應投入多少營銷費用才能使該項目本月利潤最大.
(Ⅱ)現(xiàn)該創(chuàng)業(yè)團隊本月準備投入3萬元,分別用于營銷費用和產(chǎn)品研發(fā)升級,經(jīng)預測,產(chǎn)品研發(fā)升級費用每投入x萬元增加的銷售收入大概為-
1
3
x3+x2+3x萬元,如何分配該筆資金,使該項目本月利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從5雙不同的鞋子中任取4只,
(1)取出的4只鞋子中至少能配成1雙,有多少種不同的取法?
(2)取出的4只鞋子,任何兩只都不能配成1雙,有多少種不同的取法?

查看答案和解析>>

同步練習冊答案