直線x=ky+3與雙曲線
x2
9
-
y2
4
=1
只有一個公共點(diǎn),則k的值有( 。
A、1個B、2個
C、3個D、無數(shù)多個
考點(diǎn):直線與圓錐曲線的綜合問題
專題:計(jì)算題,分類討論,圓錐曲線的定義、性質(zhì)與方程
分析:將直線x=ky+3代入雙曲線
x2
9
-
y2
4
=1
,可化為(4k2-9)y2+24ky=0.分類討論:當(dāng)4k2-9=0時,可得k=±
3
2
,此時直線與雙曲線的漸近線平行,滿足題意;當(dāng)4k2-9≠0時,由直線與雙曲線有且只有一個公共點(diǎn),可得△=0,解出即可.
解答: 解:x=ky+3代入雙曲線
x2
9
-
y2
4
=1
,可化為(4k2-9)y2+24ky=0.
①當(dāng)4k2-9=0時,可得k=±
3
2
,此時直線與雙曲線的漸近線平行,直線與雙曲線有且只有一個交點(diǎn),滿足題意;
②當(dāng)4k2-9≠0時,由直線與雙曲線有且只有一個公共點(diǎn),可得△=(24k)2-0=0,解得k=0.此時滿足條件.
綜上可得:k=±
3
2
,0.
故選:C.
點(diǎn)評:本題考查了直線與雙曲線的位置關(guān)系及其性質(zhì)、一元二次方程與△的關(guān)系、分類討論等基礎(chǔ)知識與基本方法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知A(-1,0),B(0,1),則滿足PA2-PB2=4且在圓x2+y2=4上的點(diǎn)P的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的序號)
(1)常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
(2)若直角三角形的三邊a、b、c成等差數(shù)列,則a、b、c之比為3:4:5;
(3)若三角形ABC的三內(nèi)角A、B、C成等差數(shù)列,則B=60°;
(4)若數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,則{an}的通項(xiàng)公式an=2n+1;
(5)若數(shù)列{an}的前n項(xiàng)和為Sn=3n-1,則{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若a,b∈R+,a≠b,則a3+b3>a2b+ab2;
②若a,b,c∈R,則a2+b2+c2≥ab+bc+ca;
③若a>0,b>0,a+b=2,則
a
+
b
2
;
④若
x+y>4
xy>4
,則
x>2
y>2
;
⑤函數(shù)y=
x2+2014
x2+2013
的最小值等于2.
其中正確命題的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷錯誤的是(  )
A、命題“?x∈R,2x>0”的否定是“?x0∈R,2x0≤0
B、命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
C、函數(shù)y=2x-3+1的圖象恒過定點(diǎn)A(3,2)
D、“sinα=
1
2
”是“α=
π
6
”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市有7條南北向街道,5條東西向街道.圖中共有m個矩形,從A點(diǎn)走到B點(diǎn)最短路線的走法有n種,則m,n的值分別為( 。
A、m=90,n=210
B、m=210,n=210
C、m=210,n=792
D、m=90,n=792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、若a>b>0,a>c,則a2>bc
B、若a>b>c,則
a
c
b
c
C、若a>b,n∈N*,則an>bn
D、若a>b>0,則1na<1nb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-y+2=0與圓C:(x-3)2+(y-3)2=4相交于A、B兩點(diǎn),則
CA
CB
的值為( 。
A、-1B、0C、1D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,且經(jīng)過點(diǎn)M(-
3
,
1
2
),圓C2
的直徑C1的長軸.如圖,C是橢圓短軸端點(diǎn),動直線AB過點(diǎn)C且與圓C2交于A,B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)求△ABD面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案