已知雙曲線x2-=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則的最小值為( ).
A.-2 B.- C.1 D.0
科目:高中數(shù)學(xué) 來源: 題型:
已知過拋物線y2=2px(p>0)的焦點❶,斜率為2的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=9.❷
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點,C為拋物線上一點,❸若=+λ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A,B兩點,則弦AB的長等于( ).
A.3 B.2 C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量+與垂直?如果存在,求k值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e= ,且橢圓C上的點到Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A,B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及相對應(yīng)的△OAB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓+=1(a>b>0)與直線x+y-1=0相交于P,Q兩點,且OP⊥OQ(O為原點).
(1)求證:+等于定值;
(2)若橢圓的離心率e∈,求橢圓長軸長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com