【題目】已知拋物線的焦點(diǎn)為軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),不重合),設(shè)直線,的斜率分別為,.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).

【答案】;

(Ⅱ)見(jiàn)解析.

【解析】

(Ⅰ)根據(jù)及拋物線定義可求p,從而得到方程;

(Ⅱ)設(shè)出直線方程,與拋物線方程相聯(lián)立,寫(xiě)出韋達(dá)定理,結(jié)合可得關(guān)系,從而得到定點(diǎn)坐標(biāo).

(Ⅰ)由拋物線的定義可以,

,拋物線的方程為.

(Ⅱ)由(Ⅰ)可知,點(diǎn)的坐標(biāo)為

當(dāng)直線斜率不存在時(shí),此時(shí)重合,舍去.

當(dāng)直線斜率存在時(shí),設(shè)直線的方程為

設(shè),將直線與拋物線聯(lián)立得:

,

,

,

將①代入得,

當(dāng)時(shí),直線,此時(shí)直線恒過(guò);

當(dāng)時(shí),直線,此時(shí)直線恒過(guò)(舍去)

所以直線恒過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且與軸不重合,交圓兩點(diǎn),過(guò)點(diǎn)的平行線交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線,直線與曲線相交于,兩點(diǎn),與直線相交于點(diǎn),試問(wèn)在橢圓上是否存在一定點(diǎn),使得,成等差數(shù)列(其中,,分別指直線,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

2)若,且恒成立,求a的最大值.

參考數(shù)據(jù):

1.6

1.7

1.74

1.8

10

4.953

5.474

5.697

6.050

22026

0.470

0.531

0.554

0.588

2.303

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;

(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,直線l與拋物線C交于AB兩點(diǎn),O是坐標(biāo)原點(diǎn).

1)若直線l過(guò)點(diǎn)F,求直線l的方程;

2)已知點(diǎn),若直線l不與坐標(biāo)軸垂直,且,證明:直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見(jiàn)體征有呼吸道癥狀發(fā)熱咳嗽氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎嚴(yán)重急性呼吸綜合征腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方式一:逐份檢驗(yàn),則需要檢驗(yàn)n.

方式二:混合檢驗(yàn),將其中k≥2)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1.

假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p(0<p<1).現(xiàn)取其中k≥2)份血液樣本,記采用逐份檢驗(yàn),方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

1)若,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k).

2)若p與干擾素計(jì)量相關(guān),其中2)是不同的正實(shí)數(shù),滿(mǎn)足x1=1.

(i)求證:數(shù)列為等比數(shù)列;

(ii)當(dāng)時(shí)采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了讓健身館會(huì)員參與的健身促銷(xiāo)活動(dòng).

1)為了解會(huì)員對(duì)促銷(xiāo)活動(dòng)的興趣程度,現(xiàn)從某周六參加該健身館健身活動(dòng)的會(huì)員中隨機(jī)采訪男性會(huì)員和女性會(huì)員各人,他們對(duì)于此次健身館健身促銷(xiāo)活動(dòng)感興趣的程度如下表所示:

感興趣

無(wú)所謂

合計(jì)

男性

女性

合計(jì)

根據(jù)以上數(shù)據(jù)能否有的把握認(rèn)為“對(duì)健身促銷(xiāo)活動(dòng)感興趣”與“性別”有關(guān)?

(參考公式,其中

2)在感興趣的會(huì)員中隨機(jī)抽取人對(duì)此次健身促銷(xiāo)活動(dòng)的滿(mǎn)意度進(jìn)行調(diào)查,以莖葉圖記錄了他們對(duì)此次健身促銷(xiāo)活動(dòng)滿(mǎn)意度的分?jǐn)?shù)(滿(mǎn)分分),如圖所示,若將此莖葉圖中滿(mǎn)意度分為“很滿(mǎn)意”(分?jǐn)?shù)不低于分)、“滿(mǎn)意”(分?jǐn)?shù)不低于平均分且低于分)、“基本滿(mǎn)意”(分?jǐn)?shù)低于平均分)三個(gè)級(jí)別.先從“滿(mǎn)意”和“很滿(mǎn)意”的會(huì)員中隨機(jī)抽取兩人參加回訪饋贈(zèng)活動(dòng),求這兩人中至少有一人是“很滿(mǎn)意”會(huì)員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M的中點(diǎn),N的中點(diǎn).

1)求證:平面ABC;

2)求二面角的正弦值;

3)設(shè)P是棱上一點(diǎn),若直線PM與平面所成角的正弦值為,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案