精英家教網 > 高中數學 > 題目詳情

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

(1)=1(2)①當λ時,軌跡方程為y=± (-4≤x≤4).軌跡是兩條平行于x軸的線段.②當λ時,方程變形為=1,當0<λ<時,點M的軌跡為中心在原點、實軸在y軸上的雙曲線滿足-4≤x≤4的部分;當<λ<1時,點M的軌跡為中心在原點、長軸在x軸上的橢圓滿足-4≤x≤4的部分;當λ≥1時,點M的軌跡為中心在原點,長軸在x軸上的橢圓.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,橢圓的左焦點為,右焦點為,過的直線交橢圓于兩點, 的周長為8,且面積最大時,為正三角形.

(1)求橢圓的方程;
(2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,證明:點在以為直徑的圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,點P(0,-1)是橢圓C1=1(a>b>0)的一個頂點,C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2AB兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知離心率為的橢圓()過點 
(1)求橢圓的方程;
(2)過點作斜率為直線與橢圓相交于兩點,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設直線lxym=0與拋物線Cy2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的焦點為雙曲線的一個焦點,且兩條曲線都經過點.

(1)求這兩條曲線的標準方程;
(2)已知點在拋物線上,且它與雙曲線的左,右焦點構成的三角形的面積為4,求點 的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定點A (p為常數,p>0),Bx軸負半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點Gy軸上.

(1)求動點M的軌跡C的方程;
(2)設EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當p=2時,求|EF|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

拋物線在點,處的切線垂直相交于點,直線與橢圓相交于兩點.

(1)求拋物線的焦點與橢圓的左焦點的距離;
(2)設點到直線的距離為,試問:是否存在直線,使得,成等比數列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案