精英家教網 > 高中數學 > 題目詳情

對于函數f(x)=ax2+(b+1)x+b-2(a≠0),若存在實數x0,使f(x0)=x0成立,則稱x0為f(x)的不動點.
(1)當a=2,b=-2時,求f(x)的不動點.
(2)若對于任何實數b,函數f(x)恒有兩個相異的不動點,求實數a的取值范圍.

解∵f(x)=ax2+(b+1)x+b-2(a≠0),
(1)當a=2,b=-2時,f(x)=2x2-x-4.
設x為其不動點,即2x2-x-4=x.
則2x2-2x-4=0.∴x1=-1,x2=2.即f(x)的不動點是-1,2.
(2)由f(x)=x得:ax2+bx+b-2=0.
由已知,此方程有相異二實根,△x>0恒成立,
即b2-4a(b-2)>0.
即b2-4ab+8a>0對任意b∈R恒成立.
∴△b<0.,
∴16a2-32a<0,
∴0<a<2.
分析:(1)設x為不動點,則有2x2-x-4=x,變形為2x2-2x-4=0,解方程即可.
(2)將f(x)=x轉化為ax2+bx+b-2=0.由已知,此方程有相異二實根,則有△x>0恒成立求解;
點評:本題主要考查的知識點是二次函數的性質,方程的解法,方程根的情況以及垂直平分線定義的應用.其中根據已知中的新定義,構造滿足條件的方程是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x)=a-
22x+1
(a∈R)
(1)求函數f(x)的定義域和值域;
(2)探索函數f(x)的單調性,并寫出探索過程;
(3)是否存在實數a使函數f(x)為奇函數?若存在求出a的值,不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=a-
22x+1
(a∈R)

(1)探索函數f(x)的單調性
(2)是否存在實數a使函數f(x)為奇函數,若存在,求出a的取值;若不存在,說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數f(x)的單調性并證明;
(Ⅱ) 是否存在實數a,使得f(x)為奇函數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數f(x)的單調性并證明;
(Ⅱ)是否存在實數a,使得f(x)為奇函數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=a x2+(b+1)x+b-2(a≠0),若存在實數 x0,使f( x0)=x0成立,則稱 x0為f(x)的不動點
(1)當a=2,b=-2時,求f(x)的不動點;
(2)若對于任何實數b,函數f(x)恒有兩個相異的不動點,求實數a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關系.

查看答案和解析>>

同步練習冊答案