【題目】已知函數(shù).
(1)當(dāng)時,求證:;
(2)當(dāng)時,若不等式恒成立,求實數(shù)的取值范圍;
(3)若,證明.
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】分析:(1)先利用導(dǎo)數(shù)求函數(shù),再證明. (2)把不等式恒成立轉(zhuǎn)化為≥0,再利用導(dǎo)數(shù)求即得a的取值范圍. (3)利用第(2)問的結(jié)論和分析法證明.
詳解:(1)當(dāng)時,,,
當(dāng)時,;當(dāng)時,
故在上單調(diào)遞減,在上單調(diào)遞增,
,.
(2),令,則.
①當(dāng)時,在上,,單調(diào)遞增,,即,在上為增函數(shù),
,當(dāng)時滿足條件.
②當(dāng)時,令,解得,在上,,單調(diào)遞減,
當(dāng)時,有,即 在上為減函數(shù),,不合題意.
綜上,實數(shù)的取值范圍為.
(3)由(2)得,當(dāng),時,,即=,
欲證不等式,
只需證明,
只需證明,
只需證 ,
設(shè),則.
當(dāng)時,恒成立,且, 恒成立.
原不等式得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時,試比較 和ex﹣1+a哪個更靠近lnx,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.
(Ⅰ)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(Ⅱ)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
(Ⅲ)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取人,從這人中任選人,求事件 “選出的人均是青年人”的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點,連接AC、AE分別交⊙O于D、G兩點,連接DG交CB于點F. (Ⅰ)求證:C、D、G、E四點共圓.
(Ⅱ)若F為EB的三等分點且靠近E,EG=1,GA=3,求線段CE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù).
(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;
(2)若,R是“a距”增函數(shù),求a的取值范圍;
(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x3﹣(1+a)x2+4ax+24a,其中常數(shù)a>1
(1)討論f(x)的單調(diào)性;
(2)若當(dāng)x≥0時,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設(shè)隨機(jī)變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則 .
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,,則下列結(jié)論正確的是( )
A. 把上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到曲線
B. 把上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到曲線
C. 把上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
D. 把上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com