【題目】已知函數(shù).

(1)當(dāng)時,求證:

(2)當(dāng)時,若不等式恒成立,求實數(shù)的取值范圍;

(3)若,證明.

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】分析:(1)先利用導(dǎo)數(shù)求函數(shù),再證明. (2)把不等式恒成立轉(zhuǎn)化為≥0,再利用導(dǎo)數(shù)求即得a的取值范圍. (3)利用第(2)問的結(jié)論和分析法證明.

詳解:(1)當(dāng)時,,,

當(dāng)時,;當(dāng)時,

上單調(diào)遞減,在上單調(diào)遞增,

.

(2),令,則.

①當(dāng)時,在上,,單調(diào)遞增,,即,上為增函數(shù),

,當(dāng)時滿足條件.

②當(dāng)時,令,解得,在上,單調(diào)遞減,

當(dāng)時,有,即 上為減函數(shù),,不合題意.

綜上,實數(shù)的取值范圍為.

(3)由(2)得,當(dāng),時,,即=,

欲證不等式,

只需證明

只需證明,

只需證 ,

設(shè),則.

當(dāng)時,恒成立,且 恒成立.

原不等式得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足 ,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時,試比較 和ex1+a哪個更靠近lnx,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計

經(jīng)常使用微信




不經(jīng)常使用微信




合計




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點,連接AC、AE分別交⊙O于D、G兩點,連接DG交CB于點F. (Ⅰ)求證:C、D、G、E四點共圓.
(Ⅱ)若F為EB的三等分點且靠近E,EG=1,GA=3,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若對定義域內(nèi)任意x都有a為正常數(shù)),則稱函數(shù)a增函數(shù).

(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;

(2)若Ra增函數(shù),求a的取值范圍;

(3)若,(﹣1,),其中kR,且為“2增函數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“正對數(shù)”:,,則下列結(jié)論中正確的是( )

A. B.

C. D.

E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x3﹣(1+a)x2+4ax+24a,其中常數(shù)a>1
(1)討論f(x)的單調(diào)性;
(2)若當(dāng)x≥0時,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設(shè)隨機(jī)變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下列結(jié)論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到曲線

C. 上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

同步練習(xí)冊答案