【題目】已知函數(shù)
(I)求 , ;
(II)求 值域.
【答案】解:(I)用 分別替換解析式中的 可得 的值;(2)利用換元法由反比例函數(shù)圖象可得 的值域。
;
(II)這個(gè)函數(shù)當(dāng) 時(shí),函數(shù)取得最大值1,當(dāng)自變量x的絕對(duì)值逐漸變大時(shí),函數(shù)值逐漸變小并趨向于0,但永遠(yuǎn)不會(huì)等于0,于是可知這個(gè)函數(shù)的值域?yàn)榧?/span>
.
【解析】(1)代入數(shù)值求出結(jié)果即可。(2)由函數(shù)自身的特點(diǎn)結(jié)合增減性即可得到函數(shù)的值域。
【考點(diǎn)精析】利用函數(shù)的值域?qū)︻}目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1的左右焦點(diǎn)分別為F1 , F2 , 則在橢圓C上滿足∠F1PF2= 的點(diǎn)P的個(gè)數(shù)有( )
A.0個(gè)
B.1個(gè)
C.2 個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】葫蘆島市某工廠黨委為了研究手機(jī)對(duì)年輕職工工作和生活的影響情況做了一項(xiàng)調(diào)查:在廠內(nèi)用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名25歲至35歲的職工,對(duì)其“每十天累計(jì)看手機(jī)時(shí)間”(單位:小時(shí))進(jìn)行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計(jì)看手機(jī)時(shí)間”的平均值和所抽取的女生 “每十天累計(jì)看手機(jī)時(shí)間”的中位數(shù)分別是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:A1O∥平面AB1C;
(2)求銳二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐 中,底面ABCD是直角梯形, , ,平面 底面ABCD, O為AD的中點(diǎn), M是棱PC上的點(diǎn), AD=2AB.
(1)求證:平面 平面PAD;
(2)若 平面BMO,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)、G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為 的直線l與曲線C: ,(α為參數(shù))交于A,B兩點(diǎn),且|AB|=2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項(xiàng)公式an和等比數(shù)列{bn}的通項(xiàng)公式bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , , , 為非零向量,且 + = , ﹣ = ,則下列說(shuō)法正確的個(gè)數(shù)為( ) ①若| |=| |,則 =0;
②若 =0,則| |=| |;
③若| |=| |,則 =0;
④若 =0,則| |=| |
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com