已知
,判斷數(shù)列的單調性.科目:高中數(shù)學 來源: 題型:
n | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省高三5月高考三輪模擬文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),
(1)當且時,證明:對,;
(2)若,且存在單調遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省南通市通州區(qū)高三4月查漏補缺專項檢測數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列單調遞增,且各項非負,對于正整數(shù),若任意的,(≤≤≤),仍是中的項,則稱數(shù)列為“項可減數(shù)列”.
(1)已知數(shù)列是首項為2,公比為2的等比數(shù)列,且數(shù)列是“項可減數(shù)
列”,試確定的最大值;
(2)求證:若數(shù)列是“項可減數(shù)列”,則其前項的和;
(3)已知是各項非負的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,
并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年遼寧名校領航高考預測試(六)數(shù)學卷 題型:解答題
(本小題滿分12分)已知函數(shù).
(Ⅰ)求函數(shù)的單調遞增區(qū)間;
(Ⅱ)數(shù)列滿足:,且,記數(shù)列的前n項和為,
且.
(。┣髷(shù)列的通項公式;并判斷是否仍為數(shù)列中的項?若是,請證明;否則,說明理由.
(ⅱ)設為首項是,公差的等差數(shù)列,求證:“數(shù)列中任意不同兩項之和仍為數(shù)列中的項”的充要條件是“存在整數(shù),使”
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江蘇省鹽城市高考數(shù)學二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com