某工廠生產(chǎn)AB兩種產(chǎn)品,按計(jì)劃每天生產(chǎn)A、B各不得少于10 t,已知生產(chǎn)A產(chǎn)品1 t需用煤9 t、電4度、勞動(dòng)力3個(gè)(按工作日計(jì)算);生產(chǎn)B產(chǎn)品1 t需用煤4 t、電5度、勞動(dòng)力10個(gè).如果A產(chǎn)品每噸價(jià)值7萬(wàn)元,B產(chǎn)品每噸價(jià)值12萬(wàn)元,而且每天用煤不超過(guò)   300 t,用電不超過(guò)200度,勞動(dòng)力最多只有300個(gè).每天應(yīng)安排生產(chǎn)A、B兩種產(chǎn)品各多少,才能既保證完成生產(chǎn)計(jì)劃,又能為國(guó)家創(chuàng)造最多的產(chǎn)值?

解:設(shè)每天生產(chǎn)A產(chǎn)品x t和B產(chǎn)品y t,則煤、電力、勞動(dòng)力以及產(chǎn)量的限制為

產(chǎn)值S=7x+12y.

作出以上不等式組所表示的平面區(qū)域(如下圖),即可行域.

作直線l:7x+12y=0,把直線l向右上方平移至l1的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn)D,且與原點(diǎn)距離最大,此時(shí)S=7x+12y取最大值.解方程組D的坐標(biāo)為x=20,y=24.

答:每天生產(chǎn)A產(chǎn)品20 t和B產(chǎn)品24 t時(shí),既完成了生產(chǎn)計(jì)劃,又能為國(guó)家創(chuàng)造最多的產(chǎn)值.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品.為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù).現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)莖葉圖如圖所示:
(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種產(chǎn)品為一等品的概率PA、PB;
(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用ξ、η分別表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,求ξ、η的分布列及數(shù)學(xué)期望(均值)Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)x、y分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)須給出圖示)
表一
等級(jí)
利潤(rùn)
產(chǎn)品
一等品 二等品
A型 4(萬(wàn)元) 3(萬(wàn)元)
B型 3(萬(wàn)元) 2(萬(wàn)元)
表二
項(xiàng)目
用量
產(chǎn)品
配件(件) 資金(萬(wàn)元)
A型 6 4
B型 2 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B兩種型號(hào)的童車,每種童車都要經(jīng)過(guò)機(jī)械、油漆和裝配三個(gè)車間進(jìn)行加工,根據(jù)該廠現(xiàn)有的設(shè)備和勞動(dòng)力等條件,可以確定各車間每日的生產(chǎn)能力,我們把它們折合成有效工時(shí)來(lái)表示,現(xiàn)將各車間每日可利用的有效工時(shí)數(shù)、每輛童車的各個(gè)車間加工時(shí)所花費(fèi)的工時(shí)數(shù)以及每輛童車可獲得的利潤(rùn)情況列成下表:

試問(wèn)這兩種型號(hào)的童車每日生產(chǎn)多少輛,才能使得工廠所獲得的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品. 為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù). 現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)如下面的莖葉圖所示:

(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種

產(chǎn)品為一等品的概率PA、PB;

(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用、分別

表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,

、的分布列及數(shù)學(xué)期望(均值)、;

   (3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)、分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求、為何值時(shí),最大?最大值是多少?(解答時(shí)須給出圖示)

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省湛江市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品.為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù).現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)莖葉圖如圖所示:
(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種產(chǎn)品為一等品的概率PA、PB;
(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用ξ、η分別表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,求ξ、η的分布列及數(shù)學(xué)期望(均值)Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)x、y分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)須給出圖示)
      等級(jí)
利潤(rùn)
產(chǎn)品
一等品二等品
A型4(萬(wàn)元)3(萬(wàn)元)
B型3(萬(wàn)元)2(萬(wàn)元)
表二
              
表二
    項(xiàng)目
用量
產(chǎn)品
配件(件)資金(萬(wàn)元)
A型64
B型28


查看答案和解析>>

同步練習(xí)冊(cè)答案