【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于與不同四點,直線的斜率滿足.已知當(dāng)與軸重合時,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時,垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點的軌跡是橢圓,從而求得定點和點.
試題解析:當(dāng)與軸重合時,, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點坐標(biāo)分別為, 當(dāng)直線或斜率不存在時,點坐標(biāo)為或;
當(dāng)直線斜率存在時,設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因為
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時,點坐標(biāo)為或也滿足此方程,所以點在橢圓上.存在點和點,使得為定值,定值為.
考點:圓錐曲線的定義,性質(zhì),方程.
【方法點晴】本題是對圓錐曲線的綜合應(yīng)用進行考查,第一問通過兩個特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標(biāo)化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點為,記,證明:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓錐底面半徑,為底面圓圓心,點Q為半圓弧的中點,點為母線的中點,與所成的角為,求:
(1)圓錐的側(cè)面積;
(2)兩點在圓錐面上的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,其中.
(1)求證:直線恒過定點;
(2)當(dāng)變化時,求點到直線的距離的最大值;
(3)若直線分別與軸、軸的負半軸交于兩點,求面積的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,四棱錐P -ABCD的底面是矩形,側(cè)面PAD是正三角形,
且側(cè)面PAD⊥底面ABCD,E 為側(cè)棱PD的中點。
(1)求證:PB//平面EAC;
(2)求證:AE⊥平面PCD;
(3)當(dāng)為何值時,PB⊥AC ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當(dāng)食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求抽到食品甲包含劣質(zhì)品的概率和抽到食品乙全是一等品的概率;
(2)在概率和統(tǒng)計學(xué)中,數(shù)學(xué)期望(或均值)是基本的統(tǒng)計概念,它反映隨機變量取值的平均水平.變量的一切可能的取值與對應(yīng)的概率乘積之和稱為該變量的數(shù)學(xué)期望,記為.
參考公式:變量的取值為,對應(yīng)取值的概率,可理解為數(shù)據(jù)出現(xiàn)的頻率,
.
①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計這兩種食品為一等品、 二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來的盈利期望.
②若生產(chǎn)食品甲初期需要一次性投入10萬元,生產(chǎn)食品乙初期需要一次性投人16 萬元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負責(zé)人,以一年為期限,盈利為參照,請給出合理的投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在實數(shù)m,使得在[-1,3]上f(x)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 且是奇函數(shù).
(1)求實數(shù)的值;
(2)若,對任意都有恒成立,求實數(shù)的取值范圍;
(3)設(shè) 且,若,是否存在實數(shù)使函數(shù)在上的最大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.
(1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大小;
(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com