(2013•唐山一模)已知向量
a
,
b
滿足(
a
+2
b
)•(
a
-
b
)=-6,且|
a
|=1,|
b
|=2,則
a
b
的夾角為(  )
分析:設(shè)
a
b
的夾角為θ,根據(jù) (
a
+2
b
)•(
a
-
b
)
=-6,求出cosθ 的值,即可求得
a
b
的夾角 θ的值.
解答:解:設(shè)
a
b
的夾角為θ,由|
a
|=1,|
b
|=2,(
a
+2
b
)•(
a
-
b
)
=
a
2
+
a
b
-2
b
2
=1+1×2×cosθ-2×4=-6,
可得 cosθ=
1
2

再由 0≤θ≤π可得 θ=
π
3
,
故選C.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的定義,已知三角函數(shù)值求角的大小,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山一模)設(shè)集合A={1,2},則滿足A∪B={1,2,3,4}的集合B的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山一模)若復(fù)數(shù)
a-2i
1+i
(a∈R)
為純虛數(shù),則|3-ai|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山一模)如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD丄底面ABCD,∠APD=
π2

(I )求證:平面PAB丄平面PCD;
(II)如果AB=BC,PB=PC,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山一模)己知函數(shù)f(x)=(mx+n)e-x在x=1處取得極值e-1
(I )求函數(shù)f(x)的解析式,并求f(x)的單調(diào)區(qū)間;
(II )當(dāng).x∈(a,+∞)時(shí),f(2x-a)+f(a)>2f(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案