【題目】已知正方形的邊長為2,分別以,為一邊在空間中作正三角形,,延長到點(diǎn),使,連接,.
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)見解析(2)1
【解析】
(1)連接交于點(diǎn),連接,推導(dǎo)出,,從而平面,,,,由此能證明平面.
(2)推導(dǎo)出四邊形為平行四邊形,,從而點(diǎn)到平面的距離等于點(diǎn)到平面的距離,取的中點(diǎn)為,連接,則為點(diǎn)到平面的距離.由此能求出點(diǎn)到平面的距離.
證明:(1)連接交于點(diǎn),并連接,
則,又,,
又,,,
,平面,
平面,,
,,
,,即,
,平面.
解:(2)由題知,,且,
四邊形為平行四邊形,,
又平面,平面,
點(diǎn),點(diǎn)到平面的距離等于點(diǎn)到平面的距離,
取的中點(diǎn)為,連接,則由(1)可得.
在中,,
則,,平面,即為點(diǎn)到平面的距離.
在中,,得點(diǎn)到平面的距離為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月15日,我市召開全市創(chuàng)建全國文明城市動員大會,會議向全市人民發(fā)出動員令,吹響了集結(jié)號.為了了解哪些人更關(guān)注此活動,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在和內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計(jì)“青少年人”與“中老年人”的人數(shù)之比為.
(1)求圖中的值,若以每個小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值;
(2)若“青少年人”中有15人關(guān)注此活動,根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)氣象部門預(yù)報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風(fēng)暴中心B正以30km/h的速度向正北方向移動,距離風(fēng)暴中心450km以內(nèi)的地區(qū)都將受到影響,從現(xiàn)在起經(jīng)過___小時后該碼頭A將受到熱帶風(fēng)暴的影響(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若等比數(shù)列的前項(xiàng)和為,則,,也成等比數(shù)列.
B.命題“若為的極值點(diǎn),則”的逆命題是真命題.
C.“為真命題”是“為真命題”的充分不必要條件.
D.命題“,使得”的否定是:“,”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)文化的優(yōu)秀遺產(chǎn),數(shù)學(xué)家劉徽在注解《九章算術(shù)》時,發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊行的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,為此他創(chuàng)立了割圓術(shù),利用割圓術(shù),劉徽得到了圓周率精確到小數(shù)點(diǎn)后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若結(jié)束程序時,則輸出的為( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動直線與橢圓有且僅有一個公共點(diǎn),且與圓相交于兩點(diǎn),試問直線與的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)德育處為了解全校學(xué)生的上網(wǎng)情況,在全校隨機(jī)抽取了40名學(xué)生(其中男、女生人數(shù)各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖.
(1)寫出女生組頻率分布直方圖中的值;
(2)求抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15的學(xué)生人數(shù);
(3)在抽取的40名學(xué)生中從月上網(wǎng)次數(shù)不少于20的學(xué)生中隨機(jī)抽取3人,并用表示隨機(jī)抽取的3人中男生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型中華傳統(tǒng)文化電視節(jié)目《中國詩詞大會》以“賞中華詩詞,尋文化基因,品生活之美”為宗旨,深受廣大觀眾喜愛,各基層單位也通過各種形式積極組織、選拔和推薦參賽選手.某單位制定規(guī)則如下:(1)凡報名參賽的詩詞愛好者必須先后通過筆試和面試,方可獲得入圍正賽的推薦資格;(2)筆試成績不低于85分的選手進(jìn)入面試,面試成績最高的3人獲得推薦資格.在該單位最近組織的一次選拔活動中,隨機(jī)抽取了一個筆試成績的樣本,據(jù)此繪制成頻率分布直方圖(如圖.同時,也繪制了所有面試成績的莖葉圖(如圖2,單位:分).
(Ⅰ)估計(jì)該單位本次報名參賽的詩詞愛好者的總?cè)藬?shù);
(Ⅱ)若從面試成績高于(不含)中位數(shù)的選手中隨機(jī)選取3人,設(shè)其中獲得推薦資格的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com