【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
一般頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以下統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的額概率不超過0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
【答案】(1)列聯(lián)表見解析,在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”;(2)分布列見解析,.
【解析】試題分析:(1)由已知數(shù)據(jù)能完成列聯(lián)表,據(jù)列聯(lián)表中的數(shù)據(jù),求出,能在犯錯(cuò)概率不超過的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”;(2)由題意得的可能取值為,分別求出,由此能求出的的分布列及數(shù)學(xué)期望.
試題解析:(1)
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | 9 | 16 | 25 |
成績(jī)不優(yōu)良 | 11 | 4 | 15 |
總計(jì) | 20 | 20 | 40 |
……………2分
根據(jù)列聯(lián)表中的數(shù)據(jù),得的觀測(cè)值為,
∴能在犯錯(cuò)概率不超過的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.………………5分
(2)由表可知在8人中成績(jī)不優(yōu)良的人數(shù)為,則的可能取值為.…………6分
;;………………8分
;.……………………10分
∴的分布列為:
0 | 1 | 2 | 3 | |
………………………11分
∴.……………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖幾何體是四棱錐,為正三角形,,且.
(1)求證: 平面平面;
(2)是棱的中點(diǎn),求證:平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題實(shí)數(shù)滿足 ;命題實(shí)數(shù)滿足.
(1)當(dāng)時(shí),若“且”為真,求實(shí)數(shù)的取值范圍;
(2)若“非”是“非”的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域?yàn)?/span> (-∞,+∞), 求實(shí)數(shù)a的范圍;
(2)若f(x)的值域?yàn)?/span> [0, +∞), 求實(shí)數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若, 為直線與軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;
(2)若直線被圓截得的弦長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長(zhǎng)為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長(zhǎng)為2千米,請(qǐng)?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)舉行電視奧運(yùn)知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,
初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)題或答錯(cuò)題即終止其初賽的比賽,答對(duì)題者直接進(jìn)入決賽,答錯(cuò)題者則被淘汰.已知選手甲答題的正確率為.
(1) 求選手甲可進(jìn)入決賽的概率;
(2) 設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的, 恒成立,求的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)的圖象在點(diǎn)兩處的切線分別為l1,l2.若,且,求實(shí)數(shù)c的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com