要得到函數(shù)y=sin2x的圖象,可由函數(shù)y=cos(2x-
π4
)
(  )
分析:利用y=sin2x=cos(2x-
π
2
),利用函數(shù)y=Asin(ωx+φ)的圖象變換即可求得答案.
解答:解:∵y=sin2x=cos(2x-
π
2
),
∴y=cos(2x-
π
4
向右平移
π
8
個單位
y=cos[2(x-
π
8
)-
π
4
]=cos(2x-
π
2
)=sin2x.
故選B.
點評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,利用誘導(dǎo)公式將y=sin2x轉(zhuǎn)化為y=cos(2x-
π
2
)是變換的關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

要得到函數(shù)y=sin(2x+
π
3
)
的圖象可將y=sin2x的圖象( 。
A、向右平移
π
6
個單位長度
B、向左平移
π
6
個單位長度
C、向右平移
π
3
個單位長度
D、向左平移
π
3
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=sinωx(ω>0)在一個周期內(nèi)的圖象如圖所示,要得到函數(shù)y=sin(
1
2
x+
π
12
)的圖象,則需將函數(shù)y=sinωx的圖象( 。
A、向右平移
π
12
B、向左平移
π
12
C、向右平移
π
6
D、向左平移
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要得到函數(shù)y=sin(2x+
π
4
)
的圖象,只需要將函數(shù)y=sin2x的圖象上所有點(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要得到函數(shù)y=sin(2x-
π
3
)
的圖象,只需將函數(shù)y=sin
1
2
x
的圖象(  )

查看答案和解析>>

同步練習冊答案