【題目】“大湖名城,創(chuàng)新高地”的合肥,歷史文化積淀深厚,民俗和人文景觀豐富,科教資源眾多,自然風(fēng)光秀美,成為中小學(xué)生“研學(xué)游”的理想之地.為了將來更好地推進(jìn)“研學(xué)游”項目,某旅游學(xué)校一位實習(xí)生,在某旅行社實習(xí)期間,把“研學(xué)游”項目分為科技體驗游、民俗人文游、自然風(fēng)光游三種類型,并在前幾年該旅行社接待的全省高一學(xué)生“研學(xué)游”學(xué)校中,隨機(jī)抽取了100所學(xué)校,統(tǒng)計如下:
研學(xué)游類型 | 科技體驗游 | 民俗人文游 | 自然風(fēng)光游 |
學(xué)校數(shù) | 40 | 40 | 20 |
該實習(xí)生在明年省內(nèi)有意向組織高一“研學(xué)游”學(xué)校中,隨機(jī)抽取了3所學(xué)校,并以統(tǒng)計的頻率代替學(xué)校選擇研學(xué)游類型的概率(假設(shè)每所學(xué)校在選擇研學(xué)游類型時僅選擇其中一類,且不受其他學(xué)校選擇結(jié)果的影響):
(1)若這3所學(xué)校選擇的研學(xué)游類型是“科技體驗游”和“自然風(fēng)光游”,求這兩種類型都有學(xué)校選擇的概率;
(2)設(shè)這3所學(xué)校中選擇“科技體驗游”學(xué)校數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
【答案】(1) (2)分布列見解析,
【解析】
(1)統(tǒng)計數(shù)據(jù)說明學(xué)校選擇“科技體驗游”的概率為,選擇“自然風(fēng)光游”的概率為,它們相互獨立,兩種類型都有學(xué)校選擇則分為兩類:兩所學(xué)校選“科技體驗游”,一所學(xué)校選“自然風(fēng)光游”或者一所學(xué)校選“科技體驗游”,兩所學(xué)校選“自然風(fēng)光游”,由此可計算概率;
(2)可能取值為0,1,2,3.,依次計算出概率可得概率分布列,由期望公式可計算期望.
(1)依題意,學(xué)校選擇“科技體驗游”的概率為,選擇“自然風(fēng)光游”的概率為,
∴若這3所學(xué)校選擇研學(xué)游類型為“科技體驗游”和“自然風(fēng)光游”,則這兩種類型都有學(xué)校選擇的概率為:.
(2)可能取值為0,1,2,3.
則,,
,,
∴的分布列為
0 | 1 | 2 | 3 | |
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機(jī)抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值,并估計該品種花苗綜合評分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,點M為A1C1的中點,點N為AB1上一動點.若點N為AB1的中點且CM⊥MN,求二面角MCNA的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運共同體.自2013年以來,“一帶一路”建設(shè)成果顯著.下圖是2013-2017年,我國對“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計圖.下列描述錯誤的是( )
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列關(guān)于函數(shù)的說法,不正確的是( )
A.的圖象關(guān)于對稱
B.在上有2個零點
C.在區(qū)間上單調(diào)遞減
D.函數(shù)圖象向右平移個單位,所得圖像對應(yīng)的函數(shù)為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實驗中學(xué)在教工活動中心舉辦了一場臺球比賽,為了節(jié)約時間比賽采取“3局2勝制”.現(xiàn)有甲、乙二人,已知每局甲勝的概率為0.6,乙勝的概率為0.4.求:
(1)這場比賽甲獲勝的概率;
(2)這場比賽乙所勝局?jǐn)?shù)的數(shù)學(xué)期望.
(3)這場比賽在甲獲得比賽勝利的條件下,乙有一局獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,O為AB中點,且DC⊥平面ABC,DC∥BE.已知AC=BC=DC=BE=2.
(1)求直線AD與CE所成角;
(2)求二面角O-CE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com