已知是橢圓上一點(diǎn),且點(diǎn)到橢圓的兩個(gè)焦點(diǎn)距離之和為

(1)求橢圓方程;

(2)設(shè)為橢圓的左頂點(diǎn),直線(xiàn)軸于點(diǎn),過(guò)作斜率為的直線(xiàn)交橢圓于

兩點(diǎn),若,求實(shí)數(shù)的值.

 

【答案】

(1)  (2)

【解析】

試題分析:(1),,橢圓:

(2),,,

設(shè)

斜率不存在,

斜率存在,設(shè),聯(lián)立,得到

,

考點(diǎn):直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用

點(diǎn)評(píng):解決的關(guān)鍵是理解橢圓的簡(jiǎn)單幾何性質(zhì),以及根據(jù)簡(jiǎn)單幾何性質(zhì)來(lái)求解方程,同時(shí)聯(lián)立方程組,結(jié)合韋達(dá)定理來(lái)得到根與系數(shù)的關(guān)系,解得,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是橢圓上一點(diǎn),且
PF1
PF2
=0
,|OP|=1(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)S(0,-
1
3
)
且斜率為k的動(dòng)直線(xiàn)l交
橢圓于A(yíng)、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出M的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是橢圓上一點(diǎn),且∠F1PF2=60°,設(shè)
|PF1|
|PF2|

(1)求橢圓C的離心率e和λ的函數(shù)關(guān)系式e=f(λ)
(2)若橢圓C的離心率e最小,且橢圓C上的動(dòng)點(diǎn)M到定點(diǎn)N(0,
1
2
)
的最遠(yuǎn)距離為
5
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)頂點(diǎn)到其左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離分別為5和1;點(diǎn)P是橢圓上一點(diǎn),且在x軸上方,直線(xiàn)PF2的斜率為-
15

(Ⅰ)求橢圓E的方程;
(Ⅱ)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

解答題(本題共10分.請(qǐng)寫(xiě)出文字說(shuō)明, 證明過(guò)程或演算步驟):

已知是橢圓上一點(diǎn),,是橢圓的兩焦點(diǎn),且滿(mǎn)足

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線(xiàn)的斜率分別為、,若存在常數(shù)使,求直線(xiàn)的斜率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案