已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)頂點(diǎn)到其左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離分別為5和1;點(diǎn)P是橢圓上一點(diǎn),且在x軸上方,直線PF2的斜率為-
15

(Ⅰ)求橢圓E的方程;
(Ⅱ)求△F1PF2的面積.
分析:(Ⅰ)設(shè)P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),利用P到其左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離分別為5和1,且在x軸上方,直線PF2的斜率為-
15
,建立方程組,即可求得橢圓E的方程;
(Ⅱ)△F1PF2的面積=
1
2
×2c×y,由此可得結(jié)論.
解答:解:(Ⅰ)設(shè)P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),則a-c=1,a+c=5
∴a=3,c=2
b=
a2-c2
=
5

∵P到其左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離分別為5和1,且在x軸上方,直線PF2的斜率為-
15

(x+c)2+y2
=5
(x-c)2+y2
=1
y
x-c
=-
15
y>0
,∴
x=
385
-1
8
c=
385
+1
8
y=
15
4

∵P到其左、右兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離分別為5和1,∴2a=6,∴a=3
∴b2=a2-c2=
75-
385
8

∴橢圓E的方程為
x2
9
+
y2
75-
385
8
=1

(Ⅱ)△F1PF2的面積=
1
2
×2c×y=
385
+1
8
×
15
4
=
5
231
+
15
32
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查三角形的面積的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),焦點(diǎn)為F1、F2,雙曲線G:x2-y2=m(m>0)的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P是雙曲線G上異于頂點(diǎn)的任一點(diǎn),直線PF1、PF2與橢圓的交點(diǎn)分別為A、B和C、D,已知三角形ABF2的周長(zhǎng)等于8
2
,橢圓四個(gè)頂點(diǎn)組成的菱形的面積為8
2

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1和k2,探求k1和k2的關(guān)系;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)為圓心,以a-c為半徑作圓F1,過(guò)點(diǎn)B2(0,b)作圓F1的兩條切線,設(shè)切點(diǎn)為M、N.
(1)若過(guò)兩個(gè)切點(diǎn)M、N的直線恰好經(jīng)過(guò)點(diǎn)B1(0,-b)時(shí),求此橢圓的離心率;
(2)若直線MN的斜率為-1,且原點(diǎn)到直線MN的距離為4(
2
-1),求此時(shí)的橢圓方程;
(3)是否存在橢圓E,使得直線MN的斜率k在區(qū)間(-
2
2
,-
3
3
)內(nèi)取值?若存在,求出橢圓E的離心率e的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點(diǎn)M,N,以線段MN 為直徑作圓 C,圓心為 C.
 (1)求橢圓E的方程;
 (2)若圓C與y軸相交于不同的兩點(diǎn)A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山二模)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)交點(diǎn)為F1(-
3
,0)
,而且過(guò)點(diǎn)H(
3
1
2
)

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T(mén).證明:線段OT的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+y2=1
(a>1)的離心率e=
3
2
,直線x=2t(t>0)與橢圓E交于不同的兩點(diǎn)M、N,以線段MN為直徑作圓C,圓心為C
(Ⅰ)求橢圓E的方程;
(Ⅱ)當(dāng)圓C與y軸相切的時(shí)候,求t的值;
(Ⅲ)若O為坐標(biāo)原點(diǎn),求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案