判斷下列函數(shù)奇偶性:
(1)函數(shù)y=x2+cosx;
(2)函數(shù)y=x2sinx.
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答: 解:(1)函數(shù)的定義域?yàn)镽,則f(-x)=(-x)2+cos(-x)=x2+cosx=f(x),∴函數(shù)f(x)為偶函數(shù).
(2)函數(shù)的定義域?yàn)镽,則f(-x)=(-x)2sin(-x)=-x2sinx=-f(x),∴函數(shù)f(x)為奇函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,利用函數(shù)奇偶性的定義是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
b+i
a+2i
=1+i(a,b∈R),其中i為虛數(shù)單位,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i(i為虛數(shù)單位),
.
z
為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A、
.
z
的實(shí)部為-1
B、
.
z
的虛部為1
C、z•
.
z
=2
D、
.
z
z
=i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1
(1)求異面直線BA1和CC1的夾角是多少?
(2)求A1B和平面CDA1B1所成的角?
(3)求平面CDA1B1和平面ABCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且A、B、C成等差數(shù)列.
(1)若b=
3
2
,求a+c的取值范圍;
(2)若
1
a
,
1
b
,
1
c
也成等差數(shù)列,求A、C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(Ⅰ)求證:BC⊥D1E;
(Ⅱ)求證:B1C∥平面BED1
(Ⅲ)若平面BCC1B1與平面BED1所成的銳二面角的大小為
π
3
,求線段D1E的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知視力正常的人,能閱讀遠(yuǎn)處文字的視角不小于5′
(1)求距離人10m處所能閱讀的文字大小;
(2)若要看清長(zhǎng)、寬均為5m的大字標(biāo)語,求人距離標(biāo)語的最遠(yuǎn)距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小昆和小鵬兩人站成一列,背著墻,面朝太陽,小昆靠近墻,在太陽光照射下,小昆的頭部影子正好落在墻角處.如果小昆身高為1.6m,離墻距離為3m,小鵬的身高1.5m,離墻的距離為5m,則小鵬的身影是否在小昆的腳下,請(qǐng)通過計(jì)算說明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線過點(diǎn)P(2,0)且點(diǎn)Q(-2,
4
3
3
)到該直線的距離等于4,則該直線傾斜角為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案