9.已知tanα=2,求下列各式的值
(1)$\frac{1}{{2sinxcosx+{{cos}^2}x}}$;
(2)sin2α+6sinαcosα-cos2α.

分析 (1)利用同角三角函數(shù)關系式化簡可得原式=$\frac{si{n}^{2}x+co{s}^{2}x}{2sinxcosx+co{s}^{2}x}$=$\frac{ta{n}^{2}x+1}{2tanx+1}$,代入即可得解.
(2)利用同角三角函數(shù)關系式化簡可得原式=$\frac{si{n}^{2}α+6sinαcosα-co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+6tanα-1}{ta{n}^{2}α+1}$即可由已知求值.

解答 解:(1)∵tanα=2,
∴$\frac{1}{{2sinxcosx+{{cos}^2}x}}$=$\frac{si{n}^{2}x+co{s}^{2}x}{2sinxcosx+co{s}^{2}x}$=$\frac{ta{n}^{2}x+1}{2tanx+1}$=$\frac{5}{5}$=1.
(2)sin2α+6sinαcosα-cos2α=$\frac{si{n}^{2}α+6sinαcosα-co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+6tanα-1}{ta{n}^{2}α+1}$=$\frac{4+12-1}{4+1}$=3.

點評 本題主要考查了同角三角函數(shù)關系式在化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知$\frac{sinθ+cosθ}{sinθ-cosθ}$=2,則sinθcosθ的值是( 。
A.$\frac{3}{4}$B.±$\frac{3}{10}$C.$\frac{3}{10}$D.-$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.$\frac{sin(2π-α)cos(\frac{π}{3}+2α)cos(π-α)}{tan(α-3π)sin(\frac{π}{2}+α)sin(\frac{7π}{6}-2α)}$=-cosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知sinα+cosα=$\frac{1}{5}$,0<α<π,求下列各式的值:
(1)tanα;
(2)sin2α-2sin αcosα+3cos2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線C的中心在坐標原點,焦距2c=6,一條準線方程為x=2
(1)求雙曲線C的方程;
(2)若雙曲線C的漸近線與圓(x-3)2+y2=r2(r>0)相切,求實數(shù)r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上存在一點P滿足|OP|為邊長的正方形的面積等于2ab(其中O為坐標原點),則雙曲線的離心率的取值范圍是( 。
A.(1,$\frac{\sqrt{5}}{2}$]B.(1,$\frac{\sqrt{7}}{2}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\frac{\sqrt{7}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A={a,b,c},B={1,2,3},從A到B建立映射f,使f(a)+f(b)+f(c)=4,則滿足條件的映射共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若直線y=2a與函數(shù)f(x)=|x-a|-1的圖象只有一個交點,則實數(shù)a的值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設函數(shù)f(x)=x|x|+bx+c,給出下列四個命題:
①當x>0時,f(x)是增函數(shù);
②f(x)的圖象關于(0,c)對稱;
③當b≠0時,方程f(x)=0必有三個實數(shù)根;
④當b=0時,方程f(x)=0有且只有一個實根.
其中正確的命題是②④(填序號)

查看答案和解析>>

同步練習冊答案