【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函數(shù)f(x)=2( + ) ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點,求m的取值范圍.
【答案】
(1)解: 時, ;
又 ;
∴3sinx+cosx=0;
∴cosx=﹣3sinx;
∴ =-3
(2)解: ﹣2m2﹣1
= 2m2﹣1
=
根據(jù)題意,方程 =0有解;
即m= 有解;
∵ ;
∴
∴ ;
∴m的取值范圍為
【解析】(1)可得出向量 的坐標,根據(jù) 及平行向量的坐標關系即可得出cosx=3sinx,從而便可得出 的值;(2)可先求出 的坐標,然后進行向量坐標的數(shù)量積運算,并由二倍角的正余弦公式及兩角和的正弦公式即可得到 ,從而得出 ,而可以求出sin(2x+ )在 的范圍,從而可得出m的取值范圍.
【考點精析】本題主要考查了同角三角函數(shù)基本關系的運用的相關知識點,需要掌握同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個小組各10名學生的英語口語測試成績的莖葉圖如圖所示,現(xiàn)從這20名學生中隨機抽取一人,將“抽出的學生為甲小組學生”記為事件A;“抽出的學生英語口語測試成績不低于85分”記為事件B.則P(A|B)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m,n是不同的直線,α,β,γ是不同的平面,有以下四個命題:
①
②
③
④
其中,真命題是( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把一顆骰子投擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.已知方程組 .
(1)求方程組只有一個解的概率;
(2)若方程組每個解對應平面直角坐標系中點P(x,y),求點P落在第四象限的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin( ﹣φ)(0<φ< )的圖象經(jīng)過點(0,﹣1).
(1)求函數(shù)f(x)的對稱軸方程及相鄰兩條對稱軸間的距離d;
(2)設α、β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1).當時,求的單調增區(qū)間;
(2)當,對于任意,都有,求實數(shù)的取值范圍;
(3)若函數(shù)的圖象始終在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)ln x-a(x-1).
(1)當a=4時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若當x∈(1,+∞)時,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù)),點A的極坐標為( , ),設直線l與圓C交于點P、Q.
(1)寫出圓C的直角坐標方程;
(2)求|AP||AQ|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com