已知橢圓的長(zhǎng)軸長(zhǎng)為4,且過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:

(1);(2)詳見(jiàn)試題解析.

解析試題分析:(1)由已知列方程組可求得的值,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)利用平面向量的坐標(biāo)運(yùn)算和待定系數(shù)法可得線段的中點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,有橢圓的定義最終可得
試題解析:(1)由已知                      2分
解得.                                 4分
橢圓的方程為.                           5分
(2)設(shè),則.   6分
,
,即.    7分
是橢圓上一點(diǎn),所以
,                 8分

,故.    9分
又線段的中點(diǎn)的坐標(biāo)為,             10分
,11分
線段的中點(diǎn)在橢圓上.         12分
橢圓的兩焦點(diǎn)恰為,          13分
                             14分
考點(diǎn):1、橢圓的定義、方程;2、應(yīng)用平面向量解決解析幾何問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點(diǎn)A,B.
(I)如果直線l過(guò)拋物線的焦點(diǎn),求的值;
(II)如果,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過(guò)點(diǎn)且與拋物線相交于兩點(diǎn)

(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是拋物線上相異兩點(diǎn),到y(tǒng)軸的距離的積為

(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過(guò)Q的直線與拋物線的另一交點(diǎn)為R,與軸交點(diǎn)為T,且Q為線段RT的中點(diǎn),試求弦PR長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,橢圓C過(guò)點(diǎn),兩個(gè)焦點(diǎn)為
(1)求橢圓C的方程;
(2) 是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動(dòng)點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,P為橢圓 上任意一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)動(dòng)圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一條曲線軸右邊,上每一點(diǎn)到點(diǎn)的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過(guò)點(diǎn)M的直線與曲線C有兩個(gè)交點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過(guò)橢圓的右焦點(diǎn),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案