如圖,從圓外一點作圓的兩條切線,切點分別為,交于點,設為過點且不過圓心的一條弦,求證:四點共圓.

因為,為圓的兩條切線,所以垂直平分弦
中,,              
在圓中,,
所以,,                             
又弦不過圓心,所以四點共圓.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是圓內接四邊形,延長與的延長線交于點,且, .

(1)求證:;
(2)當時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,的外接圓的切線的延長線交于點,的平分線與交于點D.

(1)求證:
(2)若的外接圓的直徑,且=1.求長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,⊙O內切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G。

(1)求證:圓心O在直線AD上;
(2)求證:點C是線段GD的中點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—1: 幾何證明選講
如圖,直線經過⊙O上一點,且,⊙O交直線.

(1)求證:直線是⊙O的切線;
(2)若⊙O的半徑為3,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,在中,,平分于點,點上,
(1)求證:是△的外接圓的切線;
(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(選修4-1:幾何證明選講)
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE•BF=BC•BD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線的參數(shù)方程為(t是參數(shù)),則曲線是(    )

A.線段 B.直線 C.圓 D.射線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,現(xiàn)在要在一塊半徑為1m.圓心角為60°的扇形紙板AOB上剪出一個平行四邊形MNPQ,使點PAB弧上,點QOA上,點M,NOB上,設∠BOPθ,YMNPQ的面積為S
(1)求S關于θ的函數(shù)關系式;
(2)求S的最大值及相應θ的值
1.  
2.   

查看答案和解析>>

同步練習冊答案