如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點.
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點到平面的距離.
(1)見試題解析;(2).
【解析】
試題分析:(I)要證明平面,關(guān)鍵是在平面內(nèi)找到一條與直線平行的直線,本題就想是否有一個過直線的平面與平面相交,交線就是我們要找的平行直線(可根據(jù)線面平行的性質(zhì)定理知),在圖形中可容易看出應(yīng)該就是平面,只不過再想一下,交線到底是什么而已,當(dāng)然具體輔助線的作法也可換成另一種說法(即試題解析中的直接取中點,然后連接的方法);(2)由于平面,所以三棱錐的體積可以很快求出,從而本題可用體積法求點到平面的距離,另外由于,如果取中點,則有,從而可得平面,也即平面平面,這時點到平面的垂線段可很快作出,從而迅速求出結(jié)論.
試題解析:(I)證明:如圖,取的中點,連接.
由已知得且,
又是的中點,則且,是平行四邊形, ∴
又平面,平面 平面
(II)設(shè)平面的距離為,
【法一】:因平面,故為與平面所成角,所以,
所以,,又因,是的中點所以,,.
作于,因,則
,
則,
因所以
【法二】因平面,故為與平面所成角,所以,
所以,,又因,是的中點所以,,.
作于,連結(jié),因,則為的中點,故
所以平面,所以平面平面,作于,則平面,所以線段的長為平面的距離.
又,
所以.
考點:(1)線面平行的判定;(2)點到平面的距離.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省六高三第一次考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點, 是線段上的點.
(I)當(dāng)是的中點時,求證:平面;
(II)要使二面角的大小為,試確定點的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com