已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線經(jīng)過點(2,2
3
),則該雙曲線的離心率為( 。
A、
3
B、2
C、
5
D、
2
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線經(jīng)過點(2,2
3
),可得
b
a
=
2
3
2
=
3
,利用e2=1+(
b
a
)2
,可求雙曲線的離心率.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線經(jīng)過點(2,2
3
),
b
a
=
2
3
2
=
3
,
e2=1+(
b
a
)2
=4,
∴e=2.
故選:B.
點評:本題考查雙曲線的幾何性質(zhì),考查學生的計算能力,正確運用雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線經(jīng)過點(2,2
3
)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=ex定義域中的任意的x1,x2(x1≠x2),有如下結(jié)論:
(1)f(x1x2)=f(x1)+f(x2);    
(2)f(x1+x2)=f(x1)f(x2);
(3)
f(x1)-f(x2)
x1-x2
<0;       
 (4)
f(x1)-f(x2)
x1-x2
>0
;
(5)f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結(jié)論中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

科拉茨是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即
n
2
);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個數(shù)列:6,3,10,5,16,8,4,2,1.
(1)如果n=2,則按照上述規(guī)則施行變換后的第8項為
 

(2)如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:1可以多次出現(xiàn)),則n的所有不同值的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的個數(shù)是(  )
(1)若
a
為單位向量,且
b
a
,|
b
|
=1,則
a
=
b
;   
(2)若|
a
|
=0,則
a
=0
(3)若
b
a
,則|
b
|=|
a
|
;   
(4)若k
a
=
0
,則必有k=0(k∈R);   
(5)若k∈R,則k•
0
=0
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2-i
1-i
=( 。
A、
3
2
+
1
2
i
B、
1
2
+
3
2
i
C、1+3i
D、3-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某流程圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2-1
B、f(x)=
1
x
C、f(x)=
ex-e-x
ex+e-x
D、f(x)=3sinx+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a5-1)3+2009(a5-1)=1,(a2005-1)3+2009(a2005-1)=-1,則下列結(jié)論中正確的是( 。
A、S2009=2009,a2005<a5
B、S2009=2009,a2005>a5
C、S2009=-2009,a2005≤a5
D、S2009=-2009,a2005≥a5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于平面直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“折線距離”:
d(A,B)=|x2-x1|+|y2-y1|.則下列命題正確的個數(shù)是(  )
①若A(-1,3),B(1,0),則d(A,B)=5;
②若點C在線段AB上,則d(A,C)+d(C,B)=d(A,B);
③在△ABC中,一定有d(A,C)+d(C,B)>d(A,B);
④在平行四邊形ABCD中,一定有d(A,B)+d(A,D)=d(C,B)+d(C,D).
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=x+1交x軸于點P,交橢圓
x2
a2
-
y2
b2
=1于相異兩點A、B,且
PA
=-3
PB

(1)求a的取值范圍;
(2)將弦AB繞點A逆時針旋轉(zhuǎn)90°得到線段AQ,設(shè)點Q坐標為(m,n),求證:m+7n=-1.

查看答案和解析>>

同步練習冊答案