精英家教網 > 高中數學 > 題目詳情
某品牌的汽車4S店,對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
頻數
40
20

10

已知分3期付款的頻率為0.2,4S店經銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元;分2期或3期付款,其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元.用表示經銷一輛汽車的利潤.
(1)求上表中的值;
(2)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的概率;(3)求的分布列及數學期望.
(1) ,;(2)0.896;(3)分布列見解析,.

試題分析:(1)由條件“分3期付款的頻率為0.2”與“100位”即可分別求出;(2)由題意可知分3期付款的概率為0.2,事件:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”即分為全部未采用3期付款和只有1位采用3期付款這兩種情況,即得;(3)先將所有可能取值所對應的相應概率計算出來,然后即可列出分布列,再由期望的定義根據分布列的情況即可得出本題的解.
試題解析:(1)由,因為,所以,  2分
(2)“購買該品牌汽車的3位顧客中至多有1位采用3期付款”的概率:
                 6分
(3)記分期付款的期數為,依題意得

                  10分
因為的可能取值為1,1.5,2(單位萬元),并且
 
所以的分布列為

1
1.5
2

0.4
0.4
0.2
所以的數學期望為(萬元)             12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某公司計劃在迎春節(jié)聯歡會中設一項抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球;顒诱咭淮螐闹忻鋈齻小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數的方差是多少?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一個袋中裝有10個大小相同的小球.其中白球5個、黑球4個、紅球1個.
(1)從袋中任意摸出2個球,求至少得到1個白球的概率;
(2)從袋中任意摸出3個球,記得到白球的個數為,求隨機變量的數學期望

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

將編號為1,2,3,4的四個小球,分別放入編號為1,2,3,4的四個盒子,每個盒子中有且僅有一個小球.若小球的編號與盒子的編號相同,得1分,否則得0分.記為四個小球得分總和.
(1)求時的概率;
(2)求的概率分布及數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若二項式(
1
x
+x23展開式中的常數項為k,則直線y=kx與曲線y=x2圍成的封閉圖形的面積為( 。
A.3B.
9
2
C.9D.
27
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

從某批產品中,有放回地抽取產品二次,每次隨機抽取1件,假設事件A“取出的2件產品都是二等品”的概率P(A)=0.04
(1)求從該批產品中任取1件是二等品的概率;
(2)若該批產品共10件,從中任意抽取2件;X表示取出的2件產品中二等品的件數,求X的分布列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

由于某高中建設了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲、乙兩人玩猜數字游戲,規(guī)則如下:
①連續(xù)競猜次,每次相互獨立;
②每次竟猜時,先由甲寫出一個數字,記為,再由乙猜測甲寫的數字,記為,已知,若,則本次競猜成功;
③在次競猜中,至少有次競猜成功,則兩人獲獎.
(Ⅰ) 求甲乙兩人玩此游戲獲獎的概率;
(Ⅱ)現從人組成的代表隊中選人參加此游戲,這人中有且僅有對雙胞胎,記選出的人中含有雙胞胎的對數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)袋中裝著標有數字1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數字的9倍計分,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數字,求:
(Ⅰ)取出的3個小球上的數字互不相同的概率;
(Ⅱ)隨機變量的分布列和數學期望;
(Ⅲ)計分介于20分到40分之間的概率

查看答案和解析>>

同步練習冊答案