設(shè)
分別是橢圓:
(
)的左、右焦點,過
斜率為1的直線
與該橢圓相交于P,Q兩點,且
,
,
成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.
(Ⅰ)由橢圓定義知|PF
2|+|QF
2|+|PQ|=4a,
又2|PQ|=|PF
2|+|QF
2|,得|PQ|=
a.
l
的方程為y=x+c, 其中c=
.
設(shè)P(x
1,y
1),Q(x
2,y
2),則P,Q兩點坐標滿足方程組
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C的離心率
=
,長軸的左右兩個端點分別為
;
(1)求橢圓C的方程;
(2)點
在該橢圓上,且
,求點
到
軸的距離;
(3)過點(1,0)且斜率為1的直線與橢圓交于P,Q兩點,求△OPQ的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,已知焦距為4的橢圓
的左、右頂點分別為
,橢圓
的右焦點為
,過
作一條垂直于
軸的直線與橢圓相交于
,若線段
的長為
。
(1)求橢圓
的方程;
(2)設(shè)
是直線
上的點,直線
與橢圓
分別交于點
,求證:直線
必過
軸上的一定點,并求出此定點的坐標;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
的離心率
,右焦點到直線
的距離為
,過
的直線
交橢圓于
兩點.(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線
交
軸于
,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
與橢圓
交于A、B兩點,點F為拋物線
的焦點,若∠AFB=
,則橢圓的離心率為
A、
B、
C、
D、
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
(
)的左焦點
作
軸的垂線交橢圓于點
,
為右焦點,若
,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
上的點到右焦點F的最小距離是
,
到上頂點的距離為
,點
是線段
上的一個動點.
(I)求橢圓的方程;
(Ⅱ)是否存在過點
且與
軸不垂直的直線
與橢圓交于
、
兩點,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
AB是過橢圓
=1左焦點
F1的弦,且
,其中
是橢圓的右焦點,則弦
AB的長是_______
查看答案和解析>>