曲線和直線=在y軸右側(cè)的交點按橫坐標從小到大依次記為…,則等于                                                    (       )

A.p                            B.2p                          C.3p                          D.4p

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知中心在坐標原點、焦點在x軸上橢圓的離心率e=
3
3
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1,拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上各取兩點,將其坐標記錄于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的標準方程;
(Ⅱ)若過曲線C1的右焦點F2的任意一條直線與曲線C1相交于A、B兩點,試證明在x軸上存在一定點P,使得
PA
PB
的值是常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市休寧中學高三(上)數(shù)學綜合練習試卷1(文科)(解析版) 題型:解答題

已知中心在坐標原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市休寧中學高三(上)數(shù)學綜合練習試卷1(文科)(解析版) 題型:解答題

已知中心在坐標原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

同步練習冊答案