將編號為1,2,3,4的四個小球,分別放入編號為1,2,3,4的四個盒子,每個盒子中有且僅有一個小球.若小球的編號與盒子的編號相同,得1分,否則得0分.記為四個小球得分總和.
(1)求時的概率;
(2)求的概率分布及數(shù)學(xué)期望.

(1);(2)詳見解析.

解析試題分析:(1)先確定時對應(yīng)的事件,然后利用排列組合的相關(guān)知識求解;(2)將隨機變量的可能取值確定下來,然后將對應(yīng)的概率計算出來,列出分布列求出的數(shù)學(xué)期望與方差.
試題解析:(1)時,則編號為1,2,3,4的四個小球中有且僅有兩個小球的編號與盒子的編號相同,
,即時的概率為;                                     3分
(2)的可能取值有、、,                                               4分
,,
,                       
的分布列如下表所示



 







                                                                                 8分
,                                            9分
.                        10分
考點:排列組合、隨機變量的分布列、數(shù)學(xué)期望與方差

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示,椐統(tǒng)計,隨機變量的概率分布如下:


0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較“傳統(tǒng)式教學(xué)法”與我校所創(chuàng)立的“三步式教學(xué)法”的教學(xué)效果.共選100名學(xué)生隨機分成兩個班,每班50名學(xué)生,其中一班采取“傳統(tǒng)式教學(xué)法”,二班實行“三步式教學(xué)法”
(Ⅰ)若全校共有學(xué)生2000名,其中男生1100名,現(xiàn)抽取100名學(xué)生對兩種教學(xué)方式的受歡迎程度進行問卷調(diào)查,應(yīng)抽取多少名女生?
(Ⅱ)下表1,2分別為實行“傳統(tǒng)式教學(xué)”與“三步式教學(xué)”后的數(shù)學(xué)成績:
表1

數(shù)學(xué)成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
15
20
10
5
表2
數(shù)學(xué)成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
5
40
3
2
完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為這兩種教學(xué)法有差異.
班  次
120分以下(人數(shù))
120分以上(人數(shù))
合計(人數(shù))
一班
 
 
 
二班
 
 
 
合計
 
 
 
參考公式:,其中
參考數(shù)據(jù):
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.
(1)試用上述樣本數(shù)據(jù)估計甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(2)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;
(3)從甲廠的10件樣品中有放回的隨機抽取3件,也從乙廠的10件樣品中有放回的隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某大學(xué)一個專業(yè)團隊為某專業(yè)大學(xué)生研究了多款學(xué)習(xí)軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學(xué)年使用后,團隊調(diào)查了這個專業(yè)大一四個班的使用情況,從各班抽取的樣本人數(shù)如下表

班級




人數(shù)
3
2
3
4
(1)從這12人中隨機抽取2人,求這2人恰好來自同一班級的概率.
(2)從這12名學(xué)生中,指定甲、乙、丙三人為代表,已知他們下午自習(xí)時間每人選擇A、B兩個軟件學(xué)習(xí)的概率每個都是,且他們選擇A、B、C任一款軟件都是相互獨立的.設(shè)這三名學(xué)生中下午自習(xí)時間選軟件C的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校學(xué)習(xí)小組開展“學(xué)生語文成績與外語成績的關(guān)系”的課題研究,對該校高二年級800名學(xué)生上學(xué)期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯概率不超過0.001的前提下認(rèn)為該校學(xué)生的語文成績與外語成績有關(guān)系?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,從該校高二年級學(xué)生成績中,有放回地隨機抽取3名學(xué)生的成績,記抽取的3 個成績中語文,外語兩科成績至少有一科優(yōu)秀的個數(shù)為X ,求X的分布列和期望E(x).


 
0.010
 
0.005
 
0.001
 

 
6.635
 
7.879
 
10.828
 
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了調(diào)査某大學(xué)學(xué)生在某天上網(wǎng)的時間,隨機對lOO名男生和100名女生進行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
表l:男生上網(wǎng)時間與頻數(shù)分布表

表2:女生上網(wǎng)時間與頻數(shù)分布表

(I)從這100名男生中任意選出3人,其中恰有1人上網(wǎng)時間少于60分鐘的概率;
(II)完成下面的2X2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時間與性別有關(guān)”?
表3:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的臨界值表供參考:
(參考公式:K2=,其中n="a+b+c+d)"

查看答案和解析>>

同步練習(xí)冊答案