【題目】(1)求經過點P(4,1),且在兩坐標軸上的截距相等的直線方程.
(2)設直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點,若|AB|=2,求圓C的面積.
【答案】(1)x-4y=0或x+y-5=0.(2)4π
【解析】
(1)設直線l在x,y軸上的截距均為a,分a=0和a≠0兩種情況分別求出直線l的方程.
(2)由圓的方程得到圓心坐標和半徑r,由垂徑定理得到圓心到直線的距離,解出a值,則面積可求
(1)設直線l在x,y軸上的截距均為a,若a=0,即l過點(0,0)和(4,1),
∴l的方程為y=x,即x-4y=0.
若a≠0,則設l的方程為,∵l過點(4,1),∴=1,
∴a=5,∴l的方程為x+y-5=0.
綜上可知,直線l的方程為x-4y=0或x+y-5=0.
(2)圓C:x2+y2-2ay-2=0,即C:x2+(y-a)2=a2+2,圓心為C(0,a),半徑r=,
C到直線y=x+2a的距離為d==.
又由|AB|=2,得+=a2+2,解得a2=2,所以圓的面積為π(a2+2)=4π.
科目:高中數學 來源: 題型:
【題目】如果直線與橢圓只有一個交點,稱該直線為橢圓的“切線”.已知橢圓,點是橢圓上的任意一點,直線過點且是橢圓的“切線”.
(1)證明:過橢圓上的點的“切線”方程是;
(2)設,是橢圓長軸上的兩個端點,點不在坐標軸上,直線,分別交軸于點,,過的橢圓的“切線”交軸于點,證明:點是線段的中點;
(3)點不在軸上,記橢圓的兩個焦點分別為和,判斷過的橢圓的“切線”與直線,所成夾角是否相等?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義域為R的偶函數.當x≥0時,,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數根,則實數a的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若,則的否命題是真命題
C. 如果為真命題,為假命題,則為真命題,為假命題
D. 是函數的最小正周期為的充分不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(Ⅰ)求曲線的直角坐標方程與直線的參數方程;
(Ⅱ)設直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,過橢圓的右頂點任意作直線,交拋物線于,兩點,且,其中為坐標原點.
(1)試求橢圓的方程;
(2)過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于點、、、,試求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸,的中點為,過且垂直于線段的直線交射線于點.
(I)求點的橫坐標;
(II)當最大時,求的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com