(本小題滿分12分)

已知關于x的二次函數(shù)f(x)=ax2-4bx+1.

(I)已知集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},分別從集合PQ中隨機取一個數(shù)作為ab,求函數(shù)yf(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;

(II)在區(qū)域內隨機任取一點(ab).求函數(shù)yf(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

(1)∵aP,∴a≠0.

∴函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為x=,

要使f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),

當且僅當a>0且≤1,即2ba.

a=1,則b=-2,-1;

a=2,則b=-2,-1,1;

a=3,則b=-2,-1,1;

a=4,則b=-2,-1,1,2;

a=5,則b=-2,-1,1,2.

所求事件包含基本事件的個數(shù)是2+3+3+4+4=16.

∴所求事件的概率為=.

(2)由條件知a>0,∴同(1)可知當且僅當2baa>0時,

函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),

依條件可知試驗的全部結果所構成的區(qū)域

,為△OAB,所求事件構成區(qū)域為如圖陰影部分.

由得交點D,

∴所求事件的概率為P==.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據(jù)市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案