【題目】已知等比數(shù)列滿足:,

1)求數(shù)列的通項(xiàng)公式;

2)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.

【答案】1an·3n-1,或an=-(-1n-1

2)不存在正整數(shù)m,使得≥1成立.

【解析】

試題(1)將已知條件轉(zhuǎn)化為等比數(shù)列的首項(xiàng)和公比表示,轉(zhuǎn)化為關(guān)于的方程組,通過解方程組得到的值,從而得到數(shù)列的通項(xiàng)公式;(2)將數(shù)列的通項(xiàng)公式代入求和,分情況判斷對應(yīng)的不等式是否成立

試題解析:(1)設(shè)等比數(shù)列{an}的公比為q,

則由已知可得

解得

an·3n1,或an=-(-1n-1

2)若an·3n1,則·n1

{}是首項(xiàng)為,公比為的等比數(shù)列.

從而

an=-(-1n1,則=-(-1n1

{}是首項(xiàng)為-,公比為-1的等比數(shù)列.

從而<1

綜上,對任何正整數(shù)m,總有<1

故不存在正整數(shù)m,使得≥1成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的偶函數(shù),對任意,都有,且當(dāng)時(shí),.在區(qū)間內(nèi)關(guān)于的方程恰有個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射到軸上的點(diǎn),又被軸反射,這時(shí)反射線恰好過點(diǎn).

1)求所在直線的方程;

2)過點(diǎn)且斜率為的直線,軸分別交于、,過、作直線的垂線,垂足為,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為三個內(nèi)角的對邊,向量,.

(1)求角的大小;

(2)若,且面積為,求邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.經(jīng)過任意三點(diǎn)有且只有一個平面.

B.過點(diǎn)有且僅有一條直線與異面直線垂直.

C.一條直線與一個平面平行,它就和這個平面內(nèi)的任意一條直線平行.

D.與平面相交,則公共點(diǎn)個數(shù)為有限個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機(jī)抽取100桶檢測某項(xiàng)質(zhì)量指標(biāo),由檢測結(jié)果得到如圖的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,試比較的大小(只要求寫出答案);

(Ⅱ)佑計(jì)在甲、乙兩種食用油中各隨機(jī)抽取1桶,恰有一個桶的質(zhì)量指標(biāo)大于20,且另—個桶的質(zhì)量指標(biāo)不大于20的概率;

(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55, 38.45)的桶數(shù),求的數(shù)學(xué)期望.

注:①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,計(jì)算得

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過原點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線與圓交于,兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案